Data Warehouse and OLAP
Technology: An Overview

Data warehouses generalize and consolidate data in multidimensional space. The construction of
data warehouses involves data cleaning, data integration, and data transformation and
can be viewed as an important preprocessing step for data mining. Moreover, data ware-
houses provide on-line analytical processing (OLAP) tools for the interactive analysis of
multidimensional data of varied granularities, which facilitates effective data generaliza-
tion and data mining. Many other data mining functions, such as association, classifi-
cation, prediction, and clustering, can be integrated with OLAP operations to enhance
interactive mining of knowledge at multiple levels of abstraction. Hence, the data ware-
house has become an increasingly important platform for data analysis and on-line ana-
lytical processing and will provide an effective platform for data mining. Therefore, data
warehousing and OLAP form an essential step in the knowledge discovery process. This
chapter presents an overview of data warehouse and OLAP technology. Such an overview
is essential for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of their
data. In particular, we study the data cube, a multidimensional data model for data ware-
houses and OLAP, as well as OLAP operations such as roll-up, drill-down, slicing, and
dicing. We also look at data warehouse architecture, including steps on data warehouse
design and construction. An overview of data warehouse implementation examines gen-
eral strategies for efficient data cube computation, OLAP data indexing, and OLAP query
processing. Finally, we look at on-line-analytical mining, a powerful paradigm that inte-
grates data warehouse and OLAP technology with that of data mining.

What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to systemat-
ically organize, understand, and use their data to make strategic decisions. Data ware-
house systems are valuable tools in today’s competitive, fast-evolving world. In the last
several years, many firms have spent millions of dollars in building enterprise-wide data

105

106

Chapter 3 Data Warehouse and OLAP Technology: An Overview

warehouses. Many people feel that with competition mounting in every industry, data
warehousing is the latest must-have marketing weapon—a way to retain customers by
learning more about their needs.

“Then, what exactly is a data warehouse?” Data warehouses have been defined in many
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a database that is maintained separately from an organization’s oper-
ational databases. Data warehouse systems allow for the integration of a variety of appli-
cation systems. They support information processing by providing a solid platform of
consolidated historical data for analysis.

According to William H. Inmon, a leading architect in the construction of data ware-
house systems, “A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data in support of management’s decision making process”
[Inm96]. This short, but comprehensive definition presents the major features of a data
warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile,
distinguish data warehouses from other data repository systems, such as relational
database systems, transaction processing systems, and file systems. Let’s take a closer
look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects, such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day oper-
ations and transaction processing of an organization, a data warehouse focuses on the
modeling and analysis of data for decision makers. Hence, data warehouses typically
provide a simple and concise view around particular subject issues by excluding data
that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integrating multiple heteroge-
neous sources, such as relational databases, flat files, and on-line transaction records.
Data cleaning and data integration techniques are applied to ensure consistency in
naming conventions, encoding structures, attribute measures, and so on.

Time-variant: Data are stored to provide information from a historical perspective
(e.g., the past 5-10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, an element of time.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a phys-
ical implementation of a decision support data model and stores the information on
which an enterprise needs to make strategic decisions. A data warehouse is also often
viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision
making.

3.1 WhatIs a Data Warehouse? 107

Based on this information, we view data warehousing as the process of constructing
and using data warehouses. The construction of a data warehouse requires data cleaning,
data integration, and data consolidation. The utilization of a data warehouse often neces-
sitates a collection of decision support technologies. This allows “knowledge workers”
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conve-
niently obtain an overview of the data, and to make sound decisions based on informa-
tion in the warehouse. Some authors use the term “data warehousing” to refer only to
the process of data warehouse construction, while the term “warehouse DBMS” is used
to refer to the management and utilization of data warehouses. We will not make this
distinction here.

“How are organizations using the information from data warehouses?” Many organi-
zations use this information to support business decision-making activities, including
(1) increasing customer focus, which includes the analysis of customer buying pat-
terns (such as buying preference, buying time, budget cycles, and appetites for spend-
ing); (2) repositioning products and managing product portfolios by comparing the
performance of sales by quarter, by year, and by geographic regions in order to fine-
tune production strategies; (3) analyzing operations and looking for sources of profit;
and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Many organizations typically collect diverse kinds of data and maintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. To integrate such data, and provide easy and efficient access to it, is highly desir-
able, yet challenging. Much effort has been spent in the database industry and research
community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators), on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the query
into queries appropriate for the individual heterogeneous sites involved. These queries
are then mapped and sent to local query processors. The results returned from the dif-
ferent sites are integrated into a global answer set. This query-driven approach requires
complex information filtering and integration processes, and competes for resources
with processing at local sources. It is inefficient and potentially expensive for frequent
queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of
heterogeneous database integration described above. Rather than using a query-driven
approach, data warehousing employs an update-driven approach in which information
from multiple, heterogeneous sources is integrated in advance and stored in a warehouse
for direct querying and analysis. Unlike on-line transaction processing databases, data
warehouses do not contain the most current information. However, a data warehouse
brings high performance to the integrated heterogeneous database system because data
are copied, preprocessed, integrated, annotated, summarized, and restructured into one
semantic data store. Furthermore, query processing in data warehouses does not interfere
with the processing at local sources. Moreover, data warehouses can store and integrate

108

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.1.1

historical information and support complex multidimensional queries. As a result, data
warehousing has become popular in industry.

Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line trans-
action and query processing. These systems are called on-line transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization, such
as purchasing, inventory, manufacturing, banking, payroll, registration, and accounting.
Data warehouse systems, on the other hand, serve users or knowledge workers in the role
of data analysis and decision making. Such systems can organize and present data in var-
ious formats in order to accommodate the diverse needs of the different users. These
systems are known as on-line analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as
follows:

Users and system orientation: An OLTP system is customer-oriented and is used for
transaction and query processing by clerks, clients, and information technology pro-
fessionals. An OLAP system is market-oriented and is used for data analysis by knowl-
edge workers, including managers, executives, and analysts.

Data contents: An OLTP system manages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historical data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use in informed decision making.

Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. An OLAP system typically adopts
either a star or snowflake model (to be discussed in Section 3.2.2) and a subject-
oriented database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historical data or data in different organizations.
In contrast, an OLAP system often spans multiple versions of a database schema,
due to the evolutionary process of an organization. OLAP systems also deal with
information that originates from different organizations, integrating information
from many data stores. Because of their huge volume, OLAP data are stored on
multiple storage media.

Access patterns: The access patterns of an OLTP system consist mainly of short, atomic
transactions. Such a system requires concurrency control and recovery mechanisms.
However, accesses to OLAP systems are mostly read-only operations (because most

Table 3.1 Comparison between OLTP and OLAP systems.

3.1 WhatIs a Data Warehouse? 109

Feature OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational requirements,
decision support

DB design ER based, application-oriented star/snowflake, subject-oriented

Data current; guaranteed up-to-date historical; accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work
Access

Focus
Operations

Number of records
accessed

Number of users
DB size

Priority

Metric

short, simple transaction
read/write
data in

index/hash on primary key

tens
thousands
100 MB to GB

high performance, high availability

transaction throughput

complex query
mostly read
information out

lots of scans

millions

hundreds

100 GB to TB

high flexibility, end-user autonomy

query throughput, response time

NOTE: Table is partially based on [CD97].

data warehouses store historical rather than up-to-date information), although many
could be complex queries.

Other features that distinguish between OLTP and OLAP systems include database size,
frequency of operations, and performance metrics. These are summarized in Table 3.1.

3.1.2 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “why not
perform on-line analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” A major reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”

110

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.0.1

queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large groups of data at summarized levels, and may require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms, such as locking and log-
ging, are required to ensure the consistency and robustness of transactions. An OLAP
query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations,
may jeopardize the execution of concurrent transactions and thus substantially reduce
the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the
different structures, contents, and uses of the data in these two systems. Decision sup-
port requires historical data, whereas operational databases do not typically maintain
historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation
(such as aggregation and summarization) of data from heterogeneous sources, result-
ing in high-quality, clean, and integrated data. In contrast, operational databases con-
tain only detailed raw data, such as transactions, which need to be consolidated before
analysis. Because the two systems provide quite different functionalities and require dif-
ferent kinds of data, it is presently necessary to maintain separate databases. However,
many vendors of operational relational database management systems are beginning to
optimize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

A Multidimensional Data Model

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data
cubes model n-dimensional data. You will also learn about concept hierarchies and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction.

From Tables and Spreadsheets to Data Cubes

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the
dimensions time, item, branch, and location. These dimensions allow the store to
keep track of things like monthly sales of items and the branches and locations

3.2 A Multidimensional Data Model 111

Table 3.2 A 2-D view of sales data for AllElectronics according to the dimensions time and item,
where the sales are from branches located in the city of Vancouver. The measure dis-
played is dollars_sold (in thousands).

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security
Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

at which the items were sold. Each dimension may have a table associated with
it, called a dimension table, which further describes the dimension. For example,
a dimension table for itern may contain the attributes item_name, brand, and type.
Dimension tables can be specified by users or experts, or automatically generated
and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like
sales, for instance. This theme is represented by a fact table. Facts are numerical mea-
sures. Think of them as the quantities by which we want to analyze relationships between
dimensions. Examples of facts for a sales data warehouse include dollars_sold
(sales amount in dollars), units_sold (number of units sold), and amount_budgeted. The
fact table contains the names of the facts, or measures, as well as keys to each of the related
dimension tables. You will soon get a clearer picture of how this works when we look at
multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing
the data cube is n-dimensional. To gain a better understanding of data cubes and the
multidimensional data model, let’s start by looking at a simple 2-D data cube that is, in
fact, a table or spreadsheet for sales data from AllElectronics. In particular, we will look at
the AllElectronics sales data for items sold per quarter in the city of Vancouver. These data
are shown in Table 3.2. In this 2-D representation, the sales for Vancouver are shown with
respect to the time dimension (organized in quarters) and the iterm dimension (organized
according to the types of items sold). The fact or measure displayed is dollars_sold (in
thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 3.3. The 3-D data of Table 3.3 are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 3.1.

112 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Table 3.3 A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and
location. The measure displayed is dollars_sold (in thousands).

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”
item item item item
home home home home

time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400
Q2 943 890 o4 698 1130 1024 41 925 894 769 52 682 680 952 31 512
Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501
Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

.{'&‘g Chicago_~854_~882 89 623
o New York 1087968 38 872
& Toronto 818 746743 591
\00 Vancouver

’g QI [605|825 | 14 | 400 b%q,
-
St
g Q2] 680|952 | 31 | 512 r\’ﬂ’
=
= Q3| 8121023 30 | 501
s Q >
= Q4] 9271038] 38 | 580

computer security

home phone
entertainment

item (types)

Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions time,
item, and location. The measure displayed is dollars_sold (in thousands).

Suppose that we would now like to view our sales data with an additional fourth
dimension, such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 3.2. If we continue
in this way, we may display any n-D data as a series of (n — 1)-D “cubes.” The data cube is
a metaphor for multidimensional data storage. The actual physical storage of such data
may differ from its logical representation. The important thing to remember is that data
cubes are n-dimensional and do not confine data to 3-D.

The above tables show the data at different degrees of summarization. In the data
warehousing research literature, a data cube such as each of the above is often referred to

3.2 A Multidimensional Data Model 113

,,&a) supplier = “SUP1” supplier = “SUP2” supplier = “SUP3”

> Chicago /——7—7— 7 A/~ """~ 7 7 AT 777 A >
New York s
Toronto

\0& Var,lﬁ?uver

=

605 | 825 | 14 | 400

1)

o0 R
E ®

fime (quarters

|computer| security |computer| security |computer| security
home phone home phone home phone
entertainment entertainment entertainment
item (types) item (types) item (types)

Figure 3.2 A 4-D data cube representation of sales data, according to the dimensions time, item, location,
and supplier. The measure displayed is dollars_sold (in thousands). For improved readability,
only some of the cube values are shown.

all 0-D (apex) cuboid

1-D cuboids

2-D cuboids

time, item (J D location,

supplier

3-D cuboids

[>

time, item, location Q

time, item) supplier ; i
g ; SUpp. item, location,

supplier

time, item, location, supplier 4-D (base) cuboid

Figure 3.3 Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and
supplier. Each cuboid represents a different degree of summarization.

as a cuboid. Given a set of dimensions, we can generate a cuboid for each of the possible
subsets of the given dimensions. The result would form a lattice of cuboids, each showing
the data at a different level of summarization, or group by. The lattice of cuboids is then
referred to as a data cube. Figure 3.3 shows a lattice of cuboids forming a data cube for
the dimensions time, item, location, and supplier.

114 Chapter 3 Data Warehouse and OLAP Technology: An Overview

322

Example 3.1

The cuboid that holds the lowest level of summarization is called the base cuboid. For
example, the 4-D cuboid in Figure 3.2 is the base cuboid for the given time, item, location,
and supplier dimensions. Figure 3.1 isa 3-D (nonbase) cuboid for time, item, and location,
summarized for all suppliers. The 0-D cuboid, which holds the highest level of summa-
rization, is called the apex cuboid. In our example, this is the total sales, or dollars_sold,
summarized over all four dimensions. The apex cuboid is typically denoted by all.

Stars, Snowflakes, and Fact Constellations:
Schemas for Multidimensional Databases

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for on-line transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
on-line data analysis.

The most popular data model for a data warehouse is a multidimensional model.
Such a model can exist in the form of a star schema, a snowflake schema, or a fact con-
stellation schema. Let’s look at each of these schema types.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Star schema. A star schema for AllElectronics sales is shown in Figure 3.4. Sales are consid-
ered along four dimensions, namely, time, item, branch, and location. The schema contains
a central fact table for sales that contains keys to each of the four dimensions, along with
two measures: dollars_sold and units_sold. To minimize the size of the fact table, dimension
identifiers (such as time_key and item_key) are system-generated identifiers. (]

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location_key, street, city, province_or_state, country}. This constraint may
introduce some redundancy. For example, “Vancouver” and “Victoria” are both cities in
the Canadian province of British Columbia. Entries for such cities in the location dimen-
sion table will create redundancy among the attributes province_or_state and country,
that is, (..., Vancouver, British Columbia, Canada) and (..., Victoria, British Columbia,
Canada). Moreover, the attributes within a dimension table may form either a hierarchy
(total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model, where
some dimension tables are normalized, thereby further splitting the data into addi-
tional tables. The resulting schema graph forms a shape similar to a snowflake.

Figure 3.4

Example 3.2

3.2 A Multidimensional Data Model 115

item
dimension table

sales
fact table

time
dimension table

time_ key time_key item_key
day item_key item_name
day_of_the_week branch_key brand
month location_key type
quarter dollars_sold supplier_type
\year units_sold N —
branch location

dimension table dimension table

branch_key location_key
branch_name street
(branch_type city

province_or_state
| country

Star schema of a data warehouse for sales.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However,
this saving of space is negligible in comparison to the typical magnitude of the fact
table. Furthermore, the snowflake structure can reduce the effectiveness of browsing,
since more joins will be needed to execute a query. Consequently, the system per-
formance may be adversely impacted. Hence, although the snowflake schema reduces
redundancy, it is not as popular as the star schema in data warehouse design.

Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 3.5.
Here, the sales fact table is identical to that of the star schema in Figure 3.4. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for ifem in the star schema is normalized in the snowflake
schema, resulting in new itern and supplier tables. For example, the itern dimension
table now contains the attributes item_key, item_name, brand, type, and supplier_key,
where supplier_key is linked to the supplier dimension table, containing supplier_key
and supplier_type information. Similarly, the single dimension table for location in the
star schema can be normalized into two new tables: location and city. The city_key in
the new location table links to the city dimension. Notice that further normalization
can be performed on province_or_state and country in the snowflake schema shown
in Figure 3.5, when desirable. (]

116

Figure 3.5

Example 3.3

Chapter 3 Data Warehouse and OLAP Technology: An Overview

time sales item supplier
dimension table fact table dimension table dimension table
(time_key time_key / (item_key) (supplier_key
day item_key item_name gupplier_type
day_of_week branch_key brand
month location_key type
quarter dollars_sold supplier_key
\year units_sold N —
branch location
dimension table dimension table
branch_key location_key city
branch_name street dimension table
branch_type \city_key | —] city_key
city

province_or_state

\country

Snowflake schema of a data warehouse for sales.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and hence
is called a galaxy schema or a fact constellation.

Fact constellation. A fact constellation schema is shown in Figure 3.6. This schema spec-
ifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 3.4). The shipping table has five dimensions, or keys: item_key,
time_key, shipper_key, from_location, and to_location, and two measures: dollars_cost and
units_shipped. A fact constellation schema allows dimension tables to be shared between
fact tables. For example, the dimensions tables for time, item, and location are shared
between both the sales and shipping fact tables. [

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it can model
multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema are commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.

3.2 A Multidimensional Data Model

117

time sales item shipping shipper
dimension table fact table dimension table fact table dimension table
rtime_key Y— time_key 'item_key) item_key 'shipper_key
day item_key item_name time_key shipper_name
day_of_week branch_key brand shipper_key —|location_key
month location_key type r{ from_location shipper_type
- - \—
quarter dollars_sold (supplier_type to_location
year units_sold dollars_cost
units_shipped
branch location
dimension table dimension table
M\ TR
branch_key —] location_key =

branch_name street

branch_type city
_ 0
province_or_state
\country

Figure 3.6 Fact constellation schema of a data warehouse for sales and shipping.

3.3

Example 3.4

Examples for Defining Star, Snowflake,
and Fact Constellation Schemas

“How can I define a multidimensional schema for my data?” Just as relational query
languages like SQL can be used to specify relational queries, a data mining query lan-
guage can be used to specify data mining tasks. In particular, we examine how to define
data warehouses and data marts in our SQL-based data mining query language, DMQL.

Data warehouses and data marts can be defined using two language primitives, one
for cube definition and one for dimension definition. The cube definition statement has the
following syntax:

define cube (cube_name) [(dimension_list)]: (measure list)
The dimension definition statement has the following syntax:
define dimension (dimension_name) as ({attribute_or_dimension_list))

Let’s look at examples of how to define the star, snowflake, and fact constellation

schemas of Examples 3.1 to 3.3 using DMQL. DMQL keywords are displayed in sans
serif font.

Star schema definition. The star schema of Example 3.1 and Figure 3.4 is defined in
DMAQL as follows:

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)

118 Chapter 3

Example 3.5

Example 3.6

Data Warehouse and OLAP Technology: An Overview

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city, province_or_state,
country)

The define cube statement defines a data cube called sales_star, which corresponds
to the central sales fact table of Example 3.1. This command specifies the dimensions
and the two measures, dollars_sold and units_sold. The data cube has four dimensions,
namely, time, item, branch, and location. A define dimension statement is used to define
each of the dimensions.]

Snowflake schema definition. The snowflake schema of Example 3.2 and Figure 3.5 is
defined in DMQL as follows:

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier
(supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location key, street, city
(city_key, city, province_or_state, country))

This definition is similar to that of sales_star (Example 3.4), except that, here, the item
and location dimension tables are normalized. For instance, the item dimension of the
sales_star data cube has been normalized in the sales_snowflake cube into two dimension
tables, item and supplier. Note that the dimension definition for supplier is specified within
the definition for item. Defining supplier in this way implicitly creates a supplier_key in the
itern dimension table definition. Similarly, the location dimension of the sales_star data
cube has been normalized in the sales_snowflake cube into two dimension tables, location
and city. The dimension definition for city is specified within the definition for location.
In this way, a city_key is implicitly created in the location dimension table definition. m

Finally, a fact constellation schema can be defined as a set of interconnected cubes.
Below is an example.

Fact constellation schema definition. The fact constellation schema of Example 3.3 and
Figure 3.6 is defined in DMQL as follows:

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state,
country)

3.24

3.2 A Multidimensional Data Model 119

define cube shipping [time, item, shipper, from_location, to_location]:
dollars_cost = sum(cost_in_dollars), units_shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper_key, shipper_name, location as
location in cube sales, shipper_type)

define dimension from_location as location in cube sales

define dimension to_location as location in cube sales

A define cube statement is used to define data cubes for sales and shipping, cor-
responding to the two fact tables of the schema of Example 3.3. Note that the time,
item, and location dimensions of the sales cube are shared with the shipping cube.
This is indicated for the time dimension, for example, as follows. Under the define
cube statement for shipping, the statement “define dimension time as time in cube
sales” is specified. (]

Measures: Their Categorization and Computation

“How are measures computed?” To answer this question, we first study how measures can
be categorized.! Note that a multidimensional point in the data cube space can be defined
by a set of dimension-value pairs, for example, (time = “Q1”, location = “Vancouver”,
item = “computer”). A data cube measure is a numerical function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension-value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories (i.e., distributive, algebraic, holistic),
based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into 7 sets. We apply the function
to each partition, resulting in n aggregate values. If the result derived by applying the
function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in
a distributed manner. For example, count() can be computed for a data cube by first
partitioning the cube into a set of subcubes, computing count() for each subcube, and
then summing up the counts obtained for each subcube. Hence, count() is a distribu-
tive aggregate function. For the same reason, sum(), min(), and max() are distributive
aggregate functions. A measure is distributive if it is obtained by applying a distribu-
tive aggregate function. Distributive measures can be computed efficiently because
they can be computed in a distributive manner.

This categorization was briefly introduced in Chapter 2 with regards to the computation of measures
for descriptive data summaries. We reexamine it here in the context of data cube measures.

120 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic
function with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min_N() and max_N()
(which find the N minimum and N maximum values, respectively, in a given set)
and standard_deviation() are algebraic aggregate functions. A measure is algebraic
if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the computa-
tion. Common examples of holistic functions include median(), mode(), and rank).

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.

Example 3.7 Interpreting measures for data cubes. Many measures of a data cube can be computed by
relational aggregation operations. In Figure 3.4, we saw a star schema for AllElectronics
sales that contains two measures, namely, dollars_sold and units_sold. In Example 3.4, the
sales_star data cube corresponding to the schema was defined using DMQL commands.
“But how are these commands interpreted in order to generate the specified data cube?”

Suppose that the relational database schema of AllElectronics is the following:

time(time_key, day, day_of_week, month, quarter, year)

item(item_key, item_name, brand, type, supplier_type)

branch(branch_key, branch_name, branch_type)

location(location_key, street, city, province_or_state, country)

sales(time_key, item_key, branch_key, location_key, number_of_units_sold, price)

The DMQL specification of Example 3.4 is translated into the following SQL query,
which generates the required sales_star cube. Here, the sum aggregate function, is used
to compute both dollars_sold and units_sold:

select s.time_key, s.item_key, s.branch key, s.location_key,
sum(s.number_of_units_sold * s.price), sum(s.number_of_units_sold)
from time t, item i, branch b, location 1, sales s,
where s.time_key = t.time_key and s.item_key = i.item_key
and s.branch_key = b.branch_key and s.location_key = Llocation_key
group by s.time_key, s.item_key, s.branch_key, s.location_key

3.05

3.2 A Multidimensional Data Model 121

The cube created in the above query is the base cuboid of the sales_star data cube. It
contains all of the dimensions specified in the data cube definition, where the granularity
of each dimension is at the join key level. A join key is a key that links a fact table and
a dimension table. The fact table associated with a base cuboid is sometimes referred to
as the base fact table.

By changing the group by clauses, we can generate other cuboids for the sales_star data
cube. For example, instead of grouping by s.time_key, we can group by t.month, which will
sum up the measures of each group by month. Also, removing “group by s.branch_key”
will generate a higher-level cuboid (where sales are summed for all branches, rather than
broken down per branch). Suppose we modify the above SQL query by removing all of
the group by clauses. This will result in obtaining the total sum of dollars_sold and the
total count of units_sold for the given data. This zero-dimensional cuboid is the apex
cuboid of the sales_star data cube. In addition, other cuboids can be generated by apply-
ing selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 3.2.1. Each cuboid corresponds to a different degree of
summarization of the given data. m

Most of the current data cube technology confines the measures of multidimensional
databases to numerical data. However, measures can also be applied to other kinds of
data, such as spatial, multimedia, or text data. This will be discussed in future chapters.

Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location. City values for location include Vancouver, Toronto, New York, and Chicago. Each
city, however, can be mapped to the province or state to which it belongs. For example,
Vancouver can be mapped to British Columbia, and Chicago to Illinois. The provinces and
states can in turn be mapped to the country to which they belong, such as Canada or the
USA. These mappings form a concept hierarchy for the dimension location, mapping a set
of low-level concepts (i.e., cities) to higher-level, more general concepts (i.e., countries).
The concept hierarchy described above is illustrated in Figure 3.7.

Many concept hierarchies are implicit within the database schema. For example, sup-
pose that the dimension location is described by the attributes number, street, city,
province_or_state, zipcode, and country. These attributes are related by a total order, forming
a concept hierarchy such as “street < city < province_or_state < country”. This hierarchy
is shown in Figure 3.8(a). Alternatively, the attributes of a dimension may be organized
in a partial order, forming a lattice. An example of a partial order for the time dimension
based on the attributes day, week, month, quarter, and year is “day < {month <quarter;
week} < year”.? This lattice structure is shown in Figure 3.8(b). A concept hierarchy

2Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.

122

Chapter 3 Data Warehouse and OLAP Technology: An Overview

Figure 3.7

Figure 3.8

location

all

country

province_or_state

British Columbial

city (Vancouver)---(Victoria) (Toronto) - (Ottawa) (New York)-- (Buffalo) (Chicago) ---

A concept hierarchy for the dimension location. Due to space limitations, not all of the nodes
of the hierarchy are shown (as indicated by the use of “ellipsis” between nodes).

country

O vyear

province_or_state l quarter (/
city l month i

street

week

day

(a) (b)

Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location; (b) a lattice for time.

that is a total or partial order among attributes in a database schema is called a schema
hierarchy. Concept hierarchies that are common to many applications may be prede-
fined in the data mining system, such as the concept hierarchy for time. Data mining
systems should provide users with the flexibility to tailor predefined hierarchies accord-
ing to their particular needs. For example, users may like to define a fiscal year starting
on April 1 or an academic year starting on September 1.

Figure 3.9

3.2.6

Example 3.8

3.2 A Multidimensional Data Model 123

($0...$1000]

(($o.‘.$200]) (($200...$400]) (($400...$600]) (($6OO.4.$800]) ((3;800..&1000])

(%0 ... ($100...§ [($200...7 [($300...§ |($400...4]($500...4 [($600...§ [($700...§|($800...§[($900...
$100] $200] $300] $400] $500] $600] $700] $800] $900] $1000]

A concept hierarchy for the attribute price.

Concept hierarchies may also be defined by discretizing or grouping values for a given
dimension or attribute, resulting in a set-grouping hierarchy. A total or partial order can
be defined among groups of values. An example of a set-grouping hierarchy is shown in
Figure 3.9 for the dimension price, where an interval ($X ...$Y] denotes the range from
$X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately_priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 2 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
shall see in the following subsection.

OLAP Operations in the Multidimensional Data Model

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the operations described below is illustrated in Figure 3.10. At the center
of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types. To

124

Chapter 3 Data Warehouse and OLAP Technology: An Overview

2 D
o &
& Toronto AT & USA_ a7
o Vancouves &
&Y Vancouver &
\000) &e“ Canada
$: Q605 W ~ Q11000
= ® B
- 13
2.Q2 Q2
= g
computer <03
S
home H
entertainment =

item (types)

home
entertainment

dice for
(location = “Toronto” or “Vancouver’)
and (time = “Q1” or “Q2") and

(item = “home entertainment” or “computer”)

Toll-up
on location
(from cities

to countries)

2
K
&

Chicago 1y

N\
.o New York 155
&\0 Toronto 4957

\0" Vancouver

2

605 | 825 | 14 | 400

(e}
s}

o
S

time (quarters)

=]
£

| computerl security
home phone

| cnmputcrl security

phone

item (types)

entertainment drill-down
item (types) on time
. (from quarters
g Chicago to months)
§ New York
g
-2 Toronto
3
= Vancouver | 605|825 | 14 [400 S
S
& Chicago
|mmpuler| security g & New York
home phone & Toronto
entertainment 9" Vancouver
item (types) January 150
February 100
March 150
@ oy
2
= May
S June
g
home ~ July
_ entertainment 605 £ August
g 425 = September]
z computer October
& phone 14 November
= December
security 400

| computerl security

|New York |Vancouver
Chicago Toronto

location (cities)

home
entertainment

item (types)

phone

Figure 3.10 Examples of typical OLAP operations on multidimensional data.

3.2 A Multidimensional Data Model 125

aid in our explanation, we refer to this cube as the central cube. The measure displayed
is dollars_sold (in thousands). (For improved readability, only some of the cubes’ cell
values are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 3.10 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 3.7. This hierarchy was defined as the total order “street
< city < province_or_state < country.” The roll-up operation shown aggregates
the data by ascending the location hierarchy from the level of city to the level of
country. In other words, rather than grouping the data by city, the resulting cube
groups the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing only
the two dimensions location and time. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to
more detailed data. Drill-down can be realized by either stepping down a concept hier-
archy for a dimension or introducing additional dimensions. Figure 3.10 shows the
result of a drill-down operation performed on the central cube by stepping down a
concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be performed
by adding new dimensions to a cube. For example, a drill-down on the central cube of
Figure 3.10 can occur by introducing an additional dimension, such as customer_group.

Slice and dice: The slice operation performs a selection on one dimension of the
given cube, resulting in a subcube. Figure 3.10 shows a slice operation where
the sales data are selected from the central cube for the dimension time using
the criterion time = “QI”. The dice operation defines a subcube by performing a
selection on two or more dimensions. Figure 3.10 shows a dice operation on the
central cube based on the following selection criteria that involve three dimensions:
(location = “Toronto” or “Vancouver”) and (time = “QI” or “Q2”) and (item =
“home entertainment” or “computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view in order to provide an alternative presentation of the data. Figure 3.10
shows a pivot operation where the item and location axes in a 2-D slice are rotated.

126 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Other examples include rotating the axes in a 3-D cube, or transforming a 3-D cube
into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across) more than one fact table.
The drill-through operation uses relational SQL facilities to drill through the bottom
level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in lists,
as well as computing moving averages, growth rates, interests, internal rates of return,
depreciation, currency conversions, and statistical functions. n

OLAP offers analytical modeling capabilities, including a calculation engine for deriv-
ing ratios, variance, and so on, and for computing measures across multiple dimensions.
It can generate summarizations, aggregations, and hierarchies at each granularity level
and at every dimension intersection. OLAP also supports functional models for forecast-
ing, trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful
data analysis tool.

OLAP Systems versus Statistical Databases

Many of the characteristics of OLAP systems, such as the use of a multidimensional
data model and concept hierarchies, the association of measures with dimensions, and
the notions of roll-up and drill-down, also exist in earlier work on statistical databases
(SDBs). A statistical database is a database system that is designed to support statistical
applications. Similarities between the two types of systems are rarely discussed, mainly
due to differences in terminology and application domains.

OLAP and SDB systems, however, have distinguishing differences. While SDBs tend to
focus on socioeconomic applications, OLAP has been targeted for business applications.
Privacy issues regarding concept hierarchies are a major concern for SDBs. For example,
given summarized socioeconomic data, it is controversial to allow users to view the cor-
responding low-level data. Finally, unlike SDBs, OLAP systems are designed for handling
huge amounts of data efficiently.

3.2.1 A Starnet Query Model for Querying

Example 3.9

Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model. A starnet
model consists of radial lines emanating from a central point, where each line represents
a concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 3.11. This starnet consists of four radial lines, representing concept hierarchies

Figure 3.11

3.3 Data Warehouse Architecture 127

location
customer

continent
group
country

province_or_state category

city name

street

O O O—> item

' S
brand category type

time

Modeling business queries: a starnet model.

for the dimensions location, customer, item, and time, respectively. Each line consists of
footprints representing abstraction levels of the dimension. For example, the time line
has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (like date for the time hierarchy) or several attributes (e.g.,
the concept hierarchy for location involves the attributes street, city, province_or_state,
and country). In order to examine the item sales at AllElectronics, users can roll up
along the time dimension from month to quarter, or, say, drill down along the location
dimension from country to city. Concept hierarchies can be used to generalize data
by replacing low-level values (such as “day” for the time dimension) by higher-level
abstractions (such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values. L]

Data Warehouse Architecture

In this section, we discuss issues regarding data warehouse architecture. Section 3.3.1
gives a general account of how to design and construct a data warehouse. Section 3.3.2
describes a three-tier data warehouse architecture. Section 3.3.3 describes back-end
tools and utilities for data warehouses. Section 3.3.4 describes the metadata repository.
Section 3.3.5 presents various types of warehouse servers for OLAP processing.

128

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.3.1 Steps for the Design and Construction of Data Warehouses

This subsection presents a business analysis framework for data warehouse design. The
basic steps involved in the design process are also described.

The Design of a Data Warehouse: A Business
Analysis Framework

“What can business analysts gain from having a data warehouse?” First, having a data
warehouse may provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and all markets. Finally, a data warehouse may bring about cost reduction by track-
ing trends, patterns, and exceptions over long periods in a consistent and reliable manner.

To design an effective data warehouse we need to understand and analyze business
needs and construct a business analysis framework. The construction of a large and com-
plex information system can be viewed as the construction of a large and complex build-
ing, for which the owner, architect, and builder have different views. These views are
combined to form a complex framework that represents the top-down, business-driven,
or owner’s perspective, as well as the bottom-up, builder-driven, or implementor’s view
of the information system.

Four different views regarding the design of a data warehouse must be considered: the
top-down view, the data source view, the data warehouse view, and the business
query view.

The top-down view allows the selection of the relevant information necessary for
the data warehouse. This information matches the current and future business
needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various
levels of detail and accuracy, from individual data source tables to integrated
data source tables. Data sources are often modeled by traditional data model-
ing techniques, such as the entity-relationship model or CASE (computer-aided
software engineering) tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the perspective of data in the data warehouse from
the viewpoint of the end user.

3.3 Data Warehouse Architecture 129

Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and program management skills. Regarding business skills, building
a data warehouse involves understanding how such systems store and manage their data,
how to build extractors that transfer data from the operational system to the data ware-
house, and how to build warehouse refresh software that keeps the data warehouse rea-
sonably up-to-date with the operational system’s data. Using a data warehouse involves
understanding the significance of the data it contains, as well as understanding and trans-
lating the business requirements into queries that can be satisfied by the data warehouse.
Regarding technology skills, data analysts are required to understand how to make assess-
ments from quantitative information and derive facts based on conclusions from his-
torical information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, program management skills involve the need to interface with many tech-
nologies, vendors, and end users in order to deliver results in a timely and cost-effective
manner.

The Process of Data Warehouse Design

A data warehouse can be built using a top-down approach, a bottom-up approach, or a
combination of both. The top-down approach starts with the overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where the
business problems that must be solved are clear and well understood. The bottom-up
approach starts with experiments and prototypes. This is useful in the early stage of busi-
ness modeling and technology development. It allows an organization to move forward
at considerably less expense and to evaluate the benefits of the technology before mak-
ing significant commitments. In the combined approach, an organization can exploit
the planned and strategic nature of the top-down approach while retaining the rapid
implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehouse may consist of the following steps: planning, requirements study, problem anal-
ysis, warehouse design, data integration and testing, and finally deployment of the data ware-
house. Large software systems can be developed using two methodologies: the waterfall
method or the spiral method. The waterfall method performs a structured and systematic
analysis at each step before proceeding to the next, which is like a waterfall, falling from
one step to the next. The spiral method involves the rapid generation of increasingly
functional systems, with short intervals between successive releases. This is considered
a good choice for data warehouse development, especially for data marts, because the
turnaround time is short, modifications can be done quickly, and new designs and tech-
nologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

I. Choose a business process to model, for example, orders, invoices, shipments,
inventory, account administration, sales, or the general ledger. If the business

130

Chapter 3 Data Warehouse and OLAP Technology: An Overview

process is organizational and involves multiple complex object collections, a data
warehouse model should be followed. However, if the process is departmental
and focuses on the analysis of one kind of business process, a data mart model
should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level
of data to be represented in the fact table for this process, for example, individual
transactions, individual daily snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars_sold and units_sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves deter-
mining the time and budget allocations, the subset of the organization that is to be
modeled, the number of data sources selected, and the number and types of depart-
ments to be served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope
management includes controlling the number and range of queries, dimensions, and
reports; limiting the size of the data warehouse; or limiting the schedule, budget, or
resources.

Various kinds of data warehouse design tools are available. Data warehouse devel-
opment tools provide functions to define and edit metadata repository contents (such
as schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogues. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

3.3.2 A Three-Tier Data Warehouse Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 3.12.

I. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bottom
tier from operational databases or other external sources (such as customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different

3.3 Data Warehouse Architecture 131

Query/report Analysis Data mining

Top tier:

|—| H front-end tools

OLAP server OLAP server

Middle tier:
OLAP server

Monitoring Administration Data warehouse Data marts
(j (j Bottom tier
ier:
N
] \ data warehouse
Metadata repoV
@ server

Extract

Clean

Transform
Load
Refresh

Data

Sinul=—=
==
Operational databases External sources

Figure 3.12 A three-tier data warehousing architecture.

sources into a unified format), as well as load and refresh functions to update the
data warehouse (Section 3.3.3). The data are extracted using application program
interfaces known as gateways. A gateway is supported by the underlying DBMS and
allows client programs to generate SQL code to be executed at a server. Examples
of gateways include ODBC (Open Database Connection) and OLEDB (Open Link-
ing and Embedding for Databases) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 3.3.4.

2. The middle tier is an OLAP server that is typically implemented using either
(1) a relational OLAP (ROLAP) model, that is, an extended relational DBMS that

132

Chapter 3 Data Warehouse and OLAP Technology: An Overview

maps operations on multidimensional data to standard relational operations; or
(2) a multidimensional OLAP (MOLAP) model, that is, a special-purpose server
that directly implements multidimensional data and operations. OLAP servers are
discussed in Section 3.3.5.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

From the architecture point of view, there are three data warehouse models: the enter-
prise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.

Data marts are usually implemented on low-cost departmental servers that are
UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is
more likely to be measured in weeks rather than months or years. However, it
may involve complex integration in the long run if its design and planning were
not enterprise-wide.

Depending on the source of data, data marts can be categorized as independent or
dependent. Independent data marts are sourced from data captured from one or more
operational systems or external information providers, or from data generated locally
within a particular department or geographic area. Dependent data marts are sourced
directly from enterprise data warehouses.

Virtual warehouse: A virtual warehouse is a set of views over operational databases. For
efficient query processing, only some of the possible summary views may be materi-
alized. A virtual warehouse is easy to build but requires excess capacity on operational
database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as
a systematic solution and minimizes integration problems. However, it is expensive,
takes a long time to develop, and lacks flexibility due to the difficulty in achieving

3.3 Data Warehouse Architecture 133

consistency and consensus for a common data model for the entire organization. The
bottom-up approach to the design, development, and deployment of independent
data marts provides flexibility, low cost, and rapid return of investment. It, however,
can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to
implement the warehouse in an incremental and evolutionary manner, as shown in
Figure 3.13. First, a high-level corporate data model is defined within a reasonably
short period (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among different subjects and potential usages. This high-level
model, although it will need to be refined in the further development of enterprise
data warehouses and departmental data marts, will greatly reduce future integration
problems. Second, independent data marts can be implemented in parallel with
the enterprise warehouse based on the same corporate data model set as above.
Third, distributed data marts can be constructed to integrate different data marts via
hub servers. Finally, a multitier data warehouse is constructed where the enterprise
warehouse is the sole custodian of all warehouse data, which is then distributed to
the various dependent data marts.

Multitier
data

warehouse

Distributed
data marts

Enterprise
data
warehouse

Data Data
mart _‘ mart

Model refinement Model refinement
Define a high-level corporate data model]

Figure 3.13 A recommended approach for data warehouse development.

134

Chapter 3 Data Warehouse and OLAP Technology: An Overview

333

334

Data Warehouse Back-End Tools and Utilities

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 3.12). These tools and utilities include the following functions:

Data extraction, which typically gathers data from multiple, heterogeneous, and exter-
nal sources

Data cleaning, which detects errors in the data and rectifies them when possible

Data transformation, which converts data from legacy or host format to warehouse
format

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions

Refresh, which propagates the updates from the data sources to the warehouse

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse sys-
tems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the quality
of the data and, subsequently, of the data mining results. They are described in Chapter 2
on Data Preprocessing. Because we are mostly interested in the aspects of data warehous-
ing technology related to data mining, we will not get into the details of the remaining
tools and recommend interested readers to consult books dedicated to data warehousing
technology.

Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are the data that
define warehouse objects. Figure 3.12 showed a metadata repository within the bottom
tier of the data warehousing architecture. Metadata are created for the data names and
definitions of the given warehouse. Additional metadata are created and captured for
timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the structure of the data warehouse, which includes the warehouse
schema, view, dimensions, hierarchies, and derived data definitions, as well as data
mart locations and contents

Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails)

The algorithms used for summarization, which include measure and dimension defi-
nition algorithms, data on granularity, partitions, subject areas, aggregation, summa-
rization, and predefined queries and reports

335

3.3 Data Warehouse Architecture 135

The mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data extrac-
tion, cleaning, transformation rules and defaults, data refresh and purging rules, and
security (user authorization and access control)

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and schedul-
ing of refresh, update, and replication cycles

Business metadata, which include business terms and definitions, data ownership
information, and charging policies

A data warehouse contains different levels of summarization, of which metadata is
one type. Other types include current detailed data (which are almost always on disk),
older detailed data (which are usually on tertiary storage), lightly summarized data and
highly summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, as a guide to the map-
ping of data when the data are transformed from the operational environment to the
data warehouse environment, and as a guide to the algorithms used for summarization
between the current detailed data and the lightly summarized data, and between the
lightly summarized data and the highly summarized data. Metadata should be stored
and managed persistently (i.e., on disk).

Types of OLAP Servers: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a relational
or extended-relational DBMS to store and manage warehouse data, and OLAP middle-
ware to support missing pieces. ROLAP servers include optimization for each DBMS
back end, implementation of aggregation navigation logic, and additional tools and
services. ROLAP technology tends to have greater scalability than MOLAP technol-
ogy. The DSS server of Microstrategy, for example, adopts the ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
views of data through array-based multidimensional storage engines. They map multi-
dimensional views directly to data cube array structures. The advantage of using a data

136 Chapter 3

Example 3.10

Table 3.4

Data Warehouse and OLAP Technology: An Overview

cube is that it allows fast indexing to precomputed summarized data. Notice that with
multidimensional data stores, the storage utilization may be low if the data set is sparse.
In such cases, sparse matrix compression techniques should be explored (Chapter 4).
Many MOLAP servers adopt a two-level storage representation to handle dense and
sparse data sets: denser subcubes are identified and stored as array structures, whereas
sparse subcubes employ compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes
of detail data to be stored in a relational database, while aggregations are kept in a
separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
Server.

Specialized SQL servers: To meet the growing demand of OLAP processing in relational
databases, some database system vendors implement specialized SQL servers that pro-
vide advanced query language and query processing support for SQL queries over star
and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for on-line
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated by
the join keys in the schema for the given data cube. Aggregated data can also be stored
in fact tables, referred to as summary fact tables. Some summary fact tables store both
base fact table data and aggregated data, as in Example 3.10. Alternatively, separate sum-
mary fact tables can be used for each level of abstraction, to store only aggregated data.

A ROLAP data store. Table 3.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema of the table is “(record_identifier (RID), item, ...,
day, month, quarter, year, dollars_sold)”, where day, month, quarter, and year define the
date of sales, and dollars_sold is the sales amount. Consider the tuples with an RID of 1001
and 1002, respectively. The data of these tuples are at the base fact level, where the date
of sales is October 15, 2003, and October 23, 2003, respectively. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuples 1001

Single table for base and summary facts.

RID item .o day month quarter year dollars_sold
1001 TV 15 10 Q4 2003 250.60
1002 N% . 23 10 Q4 2003 175.00

5001 vV e all 10 Q4 2003 45,786.08

34.1

Example 3.11

3.4 Data Warehouse Implementation 137

and 1002. The day value has been generalized to all, so that the corresponding time value
is October 2003. That is, the dollars_sold amount shown is an aggregation representing
the entire month of October 2003, rather than just October 15 or 23, 2003. The special
value all is used to represent subtotals in summarized data. (]

MOLAP uses multidimensional array structures to store data for on-line analytical
processing. This structure is discussed in the following section on data warehouse imple-
mentation and, in greater detail, in Chapter 4.

Most data warehouse systems adopt a client-server architecture. A relational data store
always resides at the data warehouse/data mart server site. A multidimensional data store
can reside at either the database server site or the client site.

Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data ware-
house systems to support highly efficient cube computation techniques, access methods,
and query processing techniques. In this section, we present an overview of methods for
the efficient implementation of data warehouse systems.

Efficient Computation of Data Cubes

At the core of multidimensional data analysis is the efficient computation of aggregations
across many sets of dimensions. In SQL terms, these aggregations are referred to as
group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this section, we explore issues relating
to the efficient computation of data cubes.

The compute cube Operator and the

Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large

numbers of dimensions. We start with an intuitive look at what is involved in the efficient
computation of data cubes.

A data cube is a lattice of cuboids. Suppose that you would like to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales_in_dollars. You
would like to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”
“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

138

Chapter 3 Data Warehouse and OLAP Technology: An Overview

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales_in_dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown
in Figure 3.14. The base cuboid contains all three dimensions, city, item, and year.
It can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains
the total sum of all sales. The base cuboid is the least generalized (most specific) of
the cuboids. The apex cuboid is the most generalized (least specific) of the cuboids,
and is often denoted as all. If we start at the apex cuboid and explore downward in
the lattice, this is equivalent to drilling down within the data cube. If we start at the
base cuboid and explore upward, this is akin to rolling up. [

An SQL query containing no group-by, such as “compute the sum of total sales,” is a
zero-dimensional operation. An SQL query containing one group-by, such as “compute
the sum of sales, group by city,” is a one-dimensional operation. A cube operator on
n dimensions is equivalent to a collection of group by statements, one for each subset

O-D (apex) cuboid

1-D cuboids

2-D cuboids

(city, item) (item, year)

3-D (base) cuboid

(city, item, year)

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.

The base cuboid contains the three dimensions city, item, and year.

3.4 Data Warehouse Implementation 139

of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of
the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in
Example 3.11 could be defined as

define cube sales_cube [city, item, year]: sum(sales_in_dollars)

For a cube with n dimensions, there are a total of 2" cuboids, including the base
cuboid. A statement such as

compute cube sales_cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of the
eight subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB*97].

On-line analytical processing may need to access different cuboids for different queries.
Therefore, it may seem like a good idea to compute all or at least some of the cuboids
in a data cube in advance. Precomputation leads to fast response time and avoids some
redundant computation. Most, if not all, OLAP products resort to some degree of pre-
computation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required storage
space may explode if all of the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for
an n-dimensional data cube, as we have seen above, is 2". However, in practice,
many dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an n-dimensional
data cube, the total number of cuboids that can be generated (including the cuboids
generated by climbing up the hierarchies along each dimension) is

n

Total number of cuboids = H(L,' +1), (3.1)
i=1

where L; is the number of levels associated with dimension i. One is added to L; in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is equiv-
alent to the removal of the dimension.) This formula is based on the fact that, at most,
one abstraction level in each dimension will appear in a cuboid. For example, the time
dimension as specified above has 4 conceptual levels, or 5 if we include the virtual level all.
If the cube has 10 dimensions and each dimension has 5 levels (including all), the total
number of cuboids that can be generated is 5! 2~ 9.8 x 10°. The size of each cuboid
also depends on the cardinality (i.e., number of distinct values) of each dimension. For
example, if the AllElectronics branch in each city sold every item, there would be

140

Chapter 3 Data Warehouse and OLAP Technology: An Overview

|city| x |item| tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space required
for many of the group-by’s will grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid). If
there are many cuboids, and these cuboids are large in size, a more reasonable option is
partial materialization, that is, to materialize only some of the possible cuboids that can
be generated.

Partial Materialization: Selected
Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

I. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to
computing expensive multidimensional aggregates on the fly, which can be extremely
slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed
cuboids is referred to as the full cube. This choice typically requires huge amounts of
memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possi-
ble cuboids. Alternatively, we may compute a subset of the cube, which contains only
those cells that satisfy some user-specified criterion, such as where the tuple count of
each cellis above some threshold. We will use the term subcube to refer to the latter case,
where only some of the cells may be precomputed for various cuboids. Partial materi-
alization represents an interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(1) identify the subset of cuboids or subcubes to materialize; (2) exploit the mate-
rialized cuboids or subcubes during query processing; and (3) efficiently update the
materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should consider workload characteristics, the cost for incremental updates, and the
total storage requirements. The selection must also consider the broad context of physical
database design, such as the generation and selection of indices. Several OLAP products
have adopted heuristic approaches for cuboid and subcube selection. A popular approach
is to materialize the set of cuboids on which other frequently referenced cuboids are based.
Alternatively, we can compute an iceberg cube, which is a data cube that stores only those
cube cells whose aggregate value (e.g., count) is above some minimum support threshold.
Another common strategy is to materialize a shell cube. This involves precomputing the
cuboids for only a small number of dimensions (such as 3 to 5) of a data cube. Queries
on additional combinations of the dimensions can be computed on-the-fly. Because our

3.4 Data Warehouse Implementation 141

aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation
to Chapter 4, which studies data warehouse and OLAP implementation in greater depth.

Once the selected cuboids have been materialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

3.4.0 Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in the previous section. In this section, we examine how
to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record_ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, By, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap index
(i.e., there are n bit vectors). If the attribute has the value v for a given row in the data
table, then the bit representing that value is set to 1 in the corresponding row of the
bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at the
top level has four values (representing item types): “home entertainment,” “computer,”
“phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector in
the bitmap index table for item. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 3.15 shows a base (data)
table containing the dimensions itemn and city, and its mapping to bitmap index tables
for each of the dimensions. (]

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and I/O since a string of charac-
ters can be represented by a single bit. For higher-cardinality domains, the method can
be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query
processing. Traditional indexing maps the value in a given column to a list of rows having

