
BPMN Adopted Specification 205

12 BPMN by Example

This section will provide an example of a business process modeled with BPMN. The process that will be described is a
process that BPMI has been using to develop this notation. It is a process for resolving issues through e-mail votes (see
Figure 12.1). This Process is small, but fairly complex and will provide examples for many of the features of BPMN.
There are some unusual features of this business process, such as infinite loops. Although not a typical process, it will
help illustrate that BPMN can handle simple and unusual business processes and still be easily understandable for readers
of the Diagram. The sections below will isolate segments of the Process and highlight the modeling features as the
workings of the Process is described. In addition, samples of BPEL4WS code are provided to demonstrate how a BPMN
Diagram maps to BPEL4WS.

Figure 12.1 - E-Mail Voting Process

The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around
this list. From that point of view, the voting members of the working group are considered as external Participants who
will be communicated with by messages (shown as Message Flow).

Yes

Yes

2nd
Time?

Issues w/o
Majority?

Did Enough
Members

Vote?

Have the
members

been warned?

E-Mail Results
of Vote

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with

warning to voting
members

Timed Out
[1 week]

Voting Members

Vote

Vote Results

Vote announcment
with warning

Vote
Announcement

Yes

Yes

Reduce to
Two Solutions

E-Mail Voters
that have to

Change VotesPrepare
Results

Announce
Issues

Any issues
ready?

Review Issue
List

Start on
Friday

Post Results
on Web Site

Receive Issue
List

Discussion
Cycle

Collect Votes

Issue
Announcement

Deadline
Warning

Deadline
Warning

Change Vote
Message

No

Yes

No

No

No

No

206 BPMN Adopted Specification

12.1 The Beginning of the Process

The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure 12.2).

Figure 12.2 - The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the
discussion and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that
week--to be taken up again the following week. If there are issues ready, then the Process will continue with the
discussion cycle. The “Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?” Decision and this
Sub-Process has two incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a
loop. It is one of a set of five complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process
and the activities that follow will be described below.

12.1.1 Mapping to BPEL4WS

BPEL4WS processes must begin with a receive activity for instantiation (i.e., it “bootstraps” itself). The “E-Mail Voting
Process” is scheduled to start every Friday as shown by the Timer Start Event. Therefore, an additional Process will have
to be created and implemented that will run indefinitely and will send a starting message with the list of Issues to the “E-
Mail Voting Process” every Friday. Figure 12.3 shows this Process as starting that the beginning of the Working Group
and continuing until the end of the Working Group. Even this Process needs a message to be sent to it to signal the start
of the Working Group. There may be another Process defined that sends that message, but that Process is not shown here.
In addition, the mapping from the Starter Process to BPEL4WS is not shown here.

Yes

+

Discussion
Cycle

Any issues
ready?

Review Issue
List

To Task:
"Announce Issues

for Vote"

A Loop :
From "Yes"

Alternative of the
"2nd Time?"

DecisionUser Activity

Collapsed
Sub-Process

Receive Issue
List

No

Issue List

Start on
Friday

Issue Voting List
[0 to 5 Issues]

BPMN Adopted Specification 207

Figure 12.3 - The Ongoing Starter Process

• Within the main Process (see Figure 12.2), the “Receive Issue List” Task will map to a BPEL4WS receive that has its
createInstance attribute set to “yes.” This will receive starting message and start the process.

• This receive will be placed inside a sequence since other activities follow the activity. The message to be received will
contain all the variable parts that will be used in the process and their initialized values.

Note – the names of BPD objects have all non-alphanumeric characters stripped from them when they are mapped to
BPEL4WS name elements to match the BPEL4WS element restrictions.

The modeler-defined properties of the Process will be placed in a BPEL4WS variables element named “processData.”
The same variables element will be used in all derived processes in this example.

• The “Review Issue List” Task will map to a BPEL4WS invoke. This TaskType is User, which means that the invoke
will be synchronous and an outputVariable included.

Mapping an Exclusive Gateway (Decision)

• The “Any Issues Ready?” Exclusive Gateway (Decision) will map to a BPEL4WS switch.

• The Gate for the “No” Sequence Flow will map to the otherwise case of the switch. This otherwise will only contain an
empty activity since there is nothing to do and the Process is over.

Note that empty does not have any corresponding activity in the BPMN Diagram, but is derived through the Diagram
configuration.

• The Gate for the “Yes” Sequence Flow will map to other case for the switch. This case will have a condition that checks
the number of issues that are ready. This case will handle the remainder of the Process that is shown in Figure 12.1.

This is done because the switch is a block structure and needs a definitive ending point and since the otherwise is
connected to the end of the Process, then the end of the Process is the ending point that the case must use. The actual
activities that make up the rest of the Process will be distributed among a set of BPEL4WS processes instead of all being

F r id a y a t 6
P M P a c if ic

T im e

Y e s

W o rk in g
G ro u p S t il l

A c t iv e ?

N o

C h e c k S ta tu s o f
W o rk in g G ro u p

[S e n d]
S e n d C u r re n t

Is s u e L is t

W o rk in g
G ro u p
A c t iv e

Is s u e L is t

208 BPMN Adopted Specification

within the case. The case will only contain an invoke that will call another process (as a web service). The distribution of
the Process activities is due to the overall Diagram configuration that includes three upstream Sequence Flow that define
some interleaving loops.

The Impact of Interleaved Loops

If the loop shown in this section of the model were merely a simple loop, and perhaps the only loop, then a BPEL4WS
while would be used to handle the loop. In this situation, though, the looping is handled through a set of derived processes
that are accessed by invoking them (as a web service). There would no specific Diagram element to represent these
derived processes; indeed, a modeler would not want to create a set of related Processes to handle complex looping.
While an execution engine can easily handle a complex set of language documents and elements, a business person
developing and monitoring this process will want to see the Process in an easy-to-read format (such as BPMN) that
contains the information in a more comprehensive, less distributed format. See “Interleaved Loops” on page 197 for
details about how interleaved loops are mapped to BPEL4WS.

In this example, all derived processes will be named “[(target of loop) activity.Name]_Derived_Process.” Any naming
scheme will work as long as all the processes have unique names.

• Thus, to handle the rest of the Process, a derived nested process named “Discussion_Cycle_Derived_Process” is cre-
ated and then

• A BPEL4WS invoke is used to access this process from the “Yes” case of the “Any issues ready?” switch.

We shall see that later in the Process the same process is accessed through another invoke, marking the source of the loop.

All the sub-processes and derived processes in the BPEL4WS documents must be started with the receive of a message
and then a reply to send a message back to the calling process.

• This means that a receive will be the first activity inside a sequence that will be the main activity of these processes.
These receive activities will have the createInstance attribute set to “Yes.” A named “internal,” a portType name “pro-
cessPort” will be created to support all of these process to process communications. The WSDL operations that will
support these communications will all be named “call_<process name>” (as noted above, the processes are actually
spawned).

The “Discussion Cycle” Sub-Process shown in Figure 12.2 will continue the sequence (after the instantiating receive) for
the “Discussion_Cycle_Derived_Process” process.

• Since “Discussion Cycle” is a Sub-Process it will map to a separate BPEL4WS process that is access through an
invoke.

Mapping an Activity Loop Condition

The “Discussion Cycle” Process has a loop marker. In this situation, the looping mechanism is simple. The attributes of
the Sub-Process will tell us the details. The “Discussion Cycle” Sub-Process’s relevant attributes are: LoopType:
“Standard”; LoopCondition: DiscussionOver = “FALSE”; and TestTime: “After.”

• This means that the invoke that calls the process will be enclosed within a while activity when the BPEL4WS is
derived.

• The LoopType will map to a BPEL4WS while. The LoopCondition of the Process (as shown above) will map to
the “DiscussionOver = False” will be the condition for the while.

BPMN Adopted Specification 209

The default value for the “DiscussionOver” property is False, thus an activity within the Sub-Process will have to change
it to True before the while loop is over. The logical opposite of the expression that is shown in the Sub-Process attributes
is used since the EvaluationCondition property is “after.” However, a while will test the condition prior to running the
activity within. This means that to insure that the activity is always performed at least once (to mimic the behavior of an
“until”) a LoopCounter variable will always be added to a the while condition for an BPMN activity that has its TestTime
attribute set to “After.”

• The LoopCounter will be initialized to zero, and an assign will be added to the sequence prior to the while element.

• The activity of the while will be changed to a sequence, with the invoke for the Sub-Process, which is

• Followed by an assign that will increment the LoopCounter variable, inside the sequence.

We will look into the details of the “Discussion Cycle” Sub-Process in Section 12.2, “The First Sub-Process,” on page
211.

BPEL4WS Sample for the Beginning of the Process

Example 12.1 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is
shown in Figure 12.2.

210 BPMN Adopted Specification

<process name="EMailVotingProcess">

<!-- The Process data is defined first-->

<sequence>

<!--This starts the beginning of the Process. The process that sends the

starting message every Friday is related to the Timer Start Event and is

not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort"

operation="receiveIssueList" variable="processData" createInstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink="Internal"

portType="tns:internalPort" operation="sendIssueList"

 inputVariable="processData" outputVariable="processData"/>

<switch name="Anyissuesready">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,NumIssues)>0">

<!--A chunk of this process is separated into a derived process so that it can be

called from a complex loop. Thus, it is called from here and from ”Collect Votes”

as part of a loop-->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Discussion_Cycle_Derived_Process" inputVariable="processData"

outputVariable="processData"/>

</case>

<!--name="No" -->

<otherwise>

<!--This is one of the two ways to the end of the Process-->

<empty/>

</otherwise>

</switch>

</sequence>

</process>

<process name="Discussion_Cycle_Derived_Process">

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

operation="call_Discussion_Cycle_Derived_Process" variable="processData"

createInstance="Yes"/>

<!--The first Sub-Process has a loop condition, so it is within a while-->

<assign name="Discussion_Cycle_initialize_loopCounter">

<copy>

<from expression="0"/>

<to variable="Discussion_Cycle_loopCounter" part="loopCounter" />

</copy>

</assign>

<!--Since the TestTime is “After” the Sub-Process has to be performed before the

 while-->

<invoke name="Discussion_Cycle" partnerLink="Internal"

BPMN Adopted Specification 211

Example 12.1 - BPEL4WS Sample for Beginning of E-Mail Voting Process

12.2 The First Sub-Process

Figure 12.4 shows the details of the “Discussion Cycle” as an Expanded Sub-Process.

portType="tns:processPort operation="call_Discussion_Cycle"

inputVariable="processData" outputVariable="processData"/>

<while condition="bpws:getVariableProperty(ProcessData,DiscussionOver)=false">

<!--This calls the first Sub-Process-->

<sequence>

<invoke name="Discussion_Cycle" partnerLink="Internal"

portType="tns:processPort operation="call_Discussion_Cycle"

 inputVariable="processData" outputVariable="processData"/>

<assign>

<copy>

<from expression=

 "bpws:getVariableProperty(Discussion_Cycle_loopCounter,LoopCounter)+1"/>

<to variable="Discussion_Cycle_loopCounter" part="LoopCounter"/>

</copy>

</assign>

</sequence>

</while>

<!--This calls the first another derived process to handle the rest of the

work-->

<invoke name="Announce_Issues_Derived_Process" partnerLink="Internal"

portType="tns:processPort" operation="call_Announce_Issues_Derived_Process"

inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"

operation="call_Discussion_Cycle_Derived_Process" variable="processData"

createInstance="Yes"/>

</sequence>

</process>

<!--A lot of other activity follows (not shown)-->

212 BPMN Adopted Specification

Figure 12.4 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts of with a Task for the Issue List Manager to send an e-mail to the working group that a set of
Issues are now open for discussion through the working group’s message board. Since this Task sends a message to an
outside Participant (the working group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-
Process to the “Voting Members” Pool in Figure 12.1. Basically, the working group will be discussing the issues for one
week and proposing additional solutions to the issues. After the first Task, three separate parallel paths are followed,
which are synchronized downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actually be
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are
being used within the Process. This Sequence Flow will merged with the Sequence Flow that comes from the Timer
Intermediate Event. A merging Exclusive Gateway is used in this situation because the next object is a joining Parallel
Gateway (the diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging
Gateway was not used and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at
the joining Gateway that would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the
middle of the Process flow (not attached to the boundary of an activity) will cause a delay. This delay is set to 6 days. The
“E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant,
an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members” Pool in Figure
12.1.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager
checks the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable
“ConCall,” which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for
labeled “default” Flow directly to an merging Exclusive Gateway, for the same reason as in the top parallel path. The
Gate for the “Yes” Sequence Flow will have a condition that checks the value of the “ConCall” variable (set in the

7 D ays

Yes

E-M ail
D iscussion
D eadline
W arn ingDelay 6 days from

A nnouncem ent

Announce
Issues for

D iscussion

M oderate
Con ference Ca ll

D iscussion

C onference
C all in

D iscussion
W eek?

W ait until
Thursday, 9am

Check Calendar
for Conference

Ca ll

Evaluate
D iscussion
P rogress

M oderate E-m a il
D iscussion

D iscussion C ycle

A llow 1 w eek for the
discussion o f the Issues —

through e-m ail or ca lls

This Task returns
the value o f the

D iscussionO ver to
True or Fa lse

The S ub-P rocess w ill repeat
of the D iscussionOver

variab le is Fa lse

N o

Issue Vo ting L is t
[0 to 5 Issues]

C alendar

BPMN Adopted Specification 213

previous Task) to see if there will be a conference call during the coming week. If so, the Timer Intermediate Event
indicates delay, since all conference calls for the working group start at 9am PDT on Thursdays. The Task for moderating
the conference call follows the delay, which is followed the merging Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline Warning” Task all flow into a
joining Gateway. This Gateway waits for all three paths to complete before the Process Flow to the next Task, “Evaluate
Discussion Progress.” The issue list manager will review the status of the issues and the discussions during the past week
and decide if the discussions are over. The DiscussionOver variable will be set to TRUE or FALSE, depending on this
evaluation. If the variable is set to FALSE, then the whole Sub-Process will be repeated, since it has looping set and the
loop condition will test the DiscussionOver variable.

12.2.1 Mapping to BPEL4WS

• The “Discussion Cycle” Sub-Process itself maps to a BPEL4WS process.

Because it is a Sub-Process within a higher-level Process (the “E-Mail Voting” Process), it is invoked from the higher-
level Process. The invoke sends a message from one (higher-level) BPEL4WS process to the other (lower-level) pro-
cess for instantiation.

• This means that the process being instantiated must have a receive to start it off.

• The process being instantiated must have a reply to end it, since it is being synchronously called.

The receive and reply are not actually shown in the BPMN Diagram, but it is derived from this invoke relationship of
“Discussion Cycle” Process being a Sub-Process to the “E-Mail Voting” Process.

• Given this, the activity of the BPEL4WS process will be a sequence with the derived receive as the first activity.

The Diagrams elements of Figure 12.4 will determine the remaining activity(ies) of the sequence.

• The Sub-Process starts off with a Task, which maps to a BPEL4WS invoke (which is after the automatically generated
receive that starts the process).

• After the first Task, three separate parallel paths are followed. The forking of the flow marks the start of a BPEL4WS
flow. The flow will extend until the Parallel Gateway, which joins the three paths.

The Upper Parallel Path

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer Intermediate Event attached
to its boundary. Because of this,

• the Task is placed in its own scope with a faultHandlers.

• The Task itself is mapped to a BPEL4WS invoke (synchronous), and will be placed in a lower-level flow, for reasons
described below.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this,

• An eventHandlers is added to the scope.

• An onAlarm is included in the eventHandlers and the for attribute is set to the duration that is defined in the Timer
Intermediate Event.

•The onAlarm contains a throw with a fault name after the Intermediate Event with “_Exit” appended.

214 BPMN Adopted Specification

The catch of a faultHandlers will be triggered by the fault generated by the above throw. Since the Timer Intermediate
Event leads direction to the Exclusive Gateway, there is no specific activity that must be performed in response the to
time-out. The main purpose is to exit the Task. Thus,

• A faultHandlers is added to the scope.

• The catch in the faultHandlers has a faultName set to Intermediate Event with “_Exit” appended.

•the catch will contain an empty activity.

The Middle Parallel Path

The middle parallel path of the fork has a string of two objects.

• Even though this series of objects appears in the middle of a BPEL4WS flow, they will be place within a sequence ele-
ment.

In these situations, the sequence will continue until there is a location in the Diagram where there are multiple incoming
Sequence Flow. When more than one Sequence Flow converge it marks the end of a BPEL4WS structure (as determined
by structures that have been created by upstream objects). In this case, the Parallel Gateway also marks the end of the
higher-level flow. The sequence will be listed in the higher-level flow without a source sub-element. This means that the
sequence will be instantiated when the higher-level flow begins since it has no dependencies on any other activity. The
sequence will have two activities:

• First, the Timer Intermediate Event used in this situation will map to a BPEL4WS wait (set to 6 days).

• Second, the “E-Mail Discussion Deadline Warning” Task will map to an invoke that follows the wait. In addition, this
invoke can be asynchronous since a response is not required. This means that the outputVariable will not be included.

This middle path of the fork could have been configured in BPEL4WS without a sequence and with links instead. This is
an example of a situation where a BPMN configuration may derive two possible BPEL4WS configurations. Since both
BPEL4WS configurations will handle the appropriate behavior, it is up to the implementation of the BPMN to BPEL4WS
derivation to determine which configuration will be used. BPMN does not provide any specific recommendation in these
situations. However, the lower parallel path of the Process can also be modeled with a sequence or with links, and, to
show how links would be used, this section of the Process will be mapped to elements in a flow that have dependencies
specified by links.

The Lower Parallel Path

The lower parallel path of the fork has a number of objects and, as just described above, will be mapped to BPEL4WS
elements connected with links. The path also contains a Decision, which can map to a switch, as will happen later in the
process, but in this situation the Decision is mapped to links controlled by transitionConditions.

• The first object is a Task, which will map to an invoke (synchronous) that has two source elements referring to two of
the links. There are two Target links because the Task is followed by the Gateway with its two Gates. This is done
instead of a switch with a case and an otherwise.

• The ConditionExpression for the Gate labeled “Yes” will map to the source element’s transitionCondition. The
expression checks the value of the “ConCall” property (set in the previous Task) to see if there will be a conference
call during the coming week.

• The Gate labeled “No” has a condition of default. For a switch, this would map to the otherwise element. However,
since a switch is not being used, the source element’s transitionCondition must be the inverse of all the other
transitionConditions for the activity. The expression of the other source will be placed inside a “not” function.

BPMN Adopted Specification 215

The invoke will be listed in the higher-level flow without a source sub-element. This means that the invoke will be
instantiated when the higher-level flow begins since it has no dependencies on any other activity. The remaining elements
of the higher-level flow will have a source element. Thus, they will not be instantiated until the source of the link has
completed.

• The “Yes” Gate from the Gateway leads to a Timer Intermediate Event, which will map to a wait.

• The for element of the wait will set to for 9am PDT on the next Thursday.

• This wait will have a target element that corresponds to the target element from the previous invoke.

• The wait will also have a target element to link to the following invoke.

• The “No” Gate from the Gateway leads to a merging Exclusive Gateway, which means that nothing is expected to hap-
pen down this path. Thus, this will map to an empty.

• This empty will have a target element that corresponds to the target element from the previous invoke.

• The Task for moderating the conference call follows the wait, which will map to an invoke (synchronous).

• This invoke will have a target element that corresponds to the target element from the previous wait.

There are three link elements in the flow:

• One link will have a source of the first invoke and a target of the wait.

• One link will have a source of the first invoke and a target of the empty.

• One link will have a source of the first wait and a target of the last invoke.

As mentioned above, the Parallel Gateway marks the end of the flow.

Finally, there will be a reply at the end of the sequence that corresponds to the initial receive and lets the parent process
know that the (sub) process has been completed.

After the Parallel Paths are Joined

The Task “Evaluate Discussion Progress” is intended to occur only when all the parallel paths have completed, and thus,
it will

• Map to an invoke that follows the closing of the flow.

216 BPMN Adopted Specification

BPEL4WS Sample for the First Sub-Process

Example 12.2 displays some sample BPEL4WS code that reflects the portion of the Process as described above and
shown in Figure 12.4.

<process name="Discussion_Cycle">

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

 operation="call_Discussion_Cycle" variable="processData" createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter"

portType="tns:emailPort" operation="sendDiscussionAnnouncement"

inputVariable="processData"/>

<flow>

<links>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday,9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!-- This is the first of the three paths of the fork. -->

<scope>

<invoke name="ModerateEmailDiscussion" partnerLink="internal"

portType="tns:internalPort" operation="sendDiscussion"

inputVariable="processData" outputVariable="processData"/>

<faultHandlers>

<catch faultName="7Days_Exit">

<empty/>

</catch>

</faultHandlers>

<eventHandlers>

<onAlarm for="tns:OneWeek">

<throw faultName="7Days_Exit"/>

</catch>

</eventHandlers>

</scope>

<!-- This is the second of the three paths of the fork. -->

BPMN Adopted Specification 217

Example 12.2 - BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

12.3 The Second Sub-Process

Figure 12.5 shows the next section of the Process, which includes the expanded details of the “Collect Votes” Sub-
Process.

<sequence>

<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>

<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"

portType="tns:emailPort" operation="sendDiscussionWarning"

inputVariable="processData">

</invoke>

</sequence>

<!-- This is the third of the three paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"

inputVariable="processData" outputVariable="processData">

<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"

 transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<source linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"

 inputVariable="processData" outputVariable="processData">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<target linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

</flow>

<invoke name="EvaluateDiscussionProgress" partnerLink="internal"

portType="tns:internalPort" operation="receiveDiscussionStatus"

inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"

 operation="call_Discussion_Cycle" variable="processData"/>

</sequence>

</process>

218 BPMN Adopted Specification

Figure 12.5 - “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this
Task sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the
“Announce Issues” Task to the “Voting Members” Pool in Figure 12.1. This Task is also a target for one of the complex
loops in the Process.

The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub-
Process is basically a set of four parallel paths that extend from the beginning to the end of the Sub-Process.

Announce
Issues

Yes

Prepare
Results

E-Mail Results
of Vote

Moderate E-mail
Discussion

Increment TallyReceive Vote

Conference
Call in Voting

Week?

Moderate
Conference Call

Discussion

E-Mail Vote
Deadline Warning

Delay 6 Days

A Loop:
From Unnamed

Sub-Process
(parallel box)

A Loop:
From Task:

"Re-announce Vote with
warning to voting members"

To Decision:
"Did Enough

Members Vote?"

From Sub-Process:
"Discussion Cycle"

Collect Votes

Timed Out
[1 week]

Wait until
Thursday, 9am

No

Vote Vote Tally

Check Calendar
for Conference

Call

Calendar

Post Results
on Web Site

BPMN Adopted Specification 219

The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there
will not be a call this week and vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process
will be used again.

The second and third branches forks work the same way as the similar activities in the “Discussion Cycle” Sub-Process,
except that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. This is not
necessary since the whole Sub-Process is interrupted after 7 days through the Intermediate Event attached to the Sub-
Process boundary. The “E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working
group members), thus, an outgoing Message Flow is seen from the “Collect Votes” Sub-Process to the “Voting Members”
Pool in Figure 12.1.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not utilize a Decision. Thus, it is,
as it is intended to be, an infinite loop. The policy of the working group is that voting members can vote more than once
on an issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in
the loop receives a message from the outside Participant (the working group members), thus, an incoming Message Flow
is seen from the “Voting Members” Pool to the “Collect Votes” Sub-Process in Figure 12.1. The Timer Intermediate Event
attached to the boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the
Sub-Process will be ended when the time-out is triggered. All the remaining work of the Process is conducted after the
time-out and Flow from the Timer Intermediate Event.

Figure 12.5 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then
a Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to
illustrate how one might be used, but it will not map to anything in the execution languages. The remaining activities of
the Process will be described in the next section.

12.3.1 Mapping to BPEL4WS

The Loops Cause Derived Sub-Processes

• The first Task of this section of the Process is also a target for one of the complex loops in the Process, thus, it will map
to an invoke (asynchronous) that is placed inside another derived process (“Announce_Issues_Derived_Process”).

• This derived process will be invoked from “Discussion_Cycle_Derived_Process,” after the “Discussion Cycle” process
has been completed, as part of the Normal Flow and then from another part of the Process as part of the looping flow.

• Thus, “Announce_Issues_Derived_Process” will require a (instantiation) receive to accept the message from
“Discussion_Cycle_Derived_Process” and from “Issues_wo_Majority_Derived_Process” (as we shall see later).

• The “Collect Votes” Sub-Process follows the Task, but is also a target of one of the looping Sequence Flow. Thus, it
will also be set inside a derived process (“Collect_Votes_Derived_Process”).

• In addition, “Collect_Votes_Derived_Process” will require a (instantiation) receive to accept the message from
“Announce_Issues_Derived_Process” and from the fault handler of “Collect Votes” (as we shall see later).

• The “Collect Votes” Sub-Process will map to an invoke (asynchronous) and the details will be in a process referenced
through the invoke.

220 BPMN Adopted Specification

The BPEL4WS Sample of the Derived Sub-Processes

Example 12.3 shows sample BPEL4WS code that defines the two derived processes.

Example 12.3 - BPEL4WS Sample that sets up the Access for the Second Sub-Process

The Paths of the Sub-Process

The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the beginning to the end of the
Sub-Process.

• Thus, the activity for the process will be a flow.

<process name="Announce_Issues_Derived_Process">

<!-- This starts the middle section of the Process and is call from

the first time and then from “Collect Votes” during a loop-->

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

 operation="call_Announce_Issues_Derived_Process"

 variable="processData" createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter" portType="tns:emailPort"

operation="sendVoteAnnouncement" inputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Collect_Votes_Derived_Process" inputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"

 operation="call_Announce_Issues_Derived_Process"

 variable="processData" createInstance="Yes"/>

</sequence>

</process>

<process name="Collect_Votes_Derived_Process">

<!-- this calls the second Sub-Process and then continues. It is also

 called from “Collect Votes” as part of a loop-->

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

operation="call_Collect_Votes_Derived_Process" variable="processData"

createInstance="Yes"/>

<invoke name="Collect_Votes" partnerLink="Internal" portType="tns:processPort"

operation="call_Collect_Votes" inputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"

operation="call_Collect_Votes_Derived_Process" variable="processData"

createInstance="Yes"/>

</sequence>

</process>

BPMN Adopted Specification 221

The Upper Parallel Path

The first branch of this Sub-Process is basically the same as the upper parallel of the previous Sub-Process. An invoke, a
wait, and an empty will be created. In addition, three links will be created to handle the dependencies between the
elements, including the branching created by the Exclusive Gateway. See “The Lower Parallel Path” on page 214 for the
details of the mappings.

The Middle Two Parallel Paths

The second and third branches of the fork are rather straightforward mappings of:

• Two Tasks to invokes (one synchronous and one asynchronous), and

• A Timer Intermediate Event to a delay.

• In addition, one link is created so that one of the invokes will wait for the delay.

The Lower Parallel Path

The fourth branch of the fork is the location the infinite loop.

• This loop will map to a BPEL4WS while with a condition of “1=0,” which will always be false.

• Inside the while is a sequence of two invokes (one synchronous and one asynchronous), which are mapped from the two
Tasks in the loop.

Exiting the Second Sub-Process

To exit out of the infinite loop and the whole “Collect Votes” Sub-Process,

• A scope will be wrapped around the main flow of the process, which will include an eventHandlers and a faultH-
andlers.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this,

• An onAlarm will be placed inside the eventHandlers. The timing of the onAlarm will be determined by the time setting
in the Intermediate Event.

• Within the onAlarm, a throw will a fault name after the Intermediate Event with “_Exit” appended.

• The catch element of the faultHandlers will be triggered by the fault generated by the above throw.

• The activity for the catch will be a sequence and will be the source of all the remaining activities of the Process,
since all the remaining Sequence Flow begins from the Timer Intermediate Event.

•The first three Tasks, as shown in the figure, will map to invokes. The latter two will be placed within a
flow.

The Document Objects shown in the figure is not mapped into BPEL4WS. The remainder of the Process will be described
in the next section.

222 BPMN Adopted Specification

BPEL4WS Sample for the Second Sub-Process

Example 12.4 shows sample BPEL4WS code that defines the “Collect Votes” Sub-Process.

<process name="Collect_Votes">

<!--This is a nested process for the E-Mail Voting collection. It consists of

an all and a faultHandlers (for a time-out). The all will never complete

normally since there is an infinite loop inside. The timeout is intended to

be the normal way of ending the process-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

operation="call_Collect_Votes" variable="processData" createInstance="Yes"/>

<scope>

<flow>

<links>

<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!--This is the first of the four paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"

portType="tns:internalPort" operation="receiveCallSchedule"

inputVariable="processData" outputVariable="processData">

<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"

transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<source linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendConCall"

 inputVariable="processData" outputVariable="processData">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<target linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal"

 portType="tns:internalPort" operation="sendDiscussion"

 inputVariable="processData" outputVariable="processData"/>

<!--This is the third of the four paths of the fork.-->

<wait name="Delay6daysfromVoteAnnouncement" for="P6D">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</wait>

BPMN Adopted Specification 223

Example 12.4 - BPEL4WS Sample of the Second Sub-Process

<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"

 inputVariable="processData">

<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote DeadlineWarning"/>

</invoke>

<!--This is the fourth of the four paths of the fork. This branch of the

all is intended to be an infinite loop that is eventually

interrupted by the Time Out. This is necessary since any voter can

change their vote until the deadline. -->

<while condition="1=0">

<sequence>

<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort"

 operation="receiveVote" variable="processData"/>

<invoke name="IncrementTally" partnerLink="internal"

 portType="tns:internalPort" operation="sendReceiveTotal"

 inputVariable="processData" outputVariable="processData"/>

</sequence>

</while>

</flow>

<eventHandlers>

<onAlarm for="P7D">

<throw faultName="7days_Exit"/>

</onAlarm>

</eventHandlers>

<faultHandlers>

<catch faultName="7days_Exit">

<!-- The BPMN Diagram shows that the Timer Intermediate Event connects directly

to the rest of the Process. Thus, they will show up in this activity set. -->

<sequence>

<invoke name="PrepareResults" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveResults"

inputVariable="processData" outputVariable="processData"/>

<flow>

<invoke name="PostResultsonWebSite" partnerLink="internal"

portType="tns:internalPort" operation="postVotingResults"

inputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter"

portType="tns:emailPort" operation="sendVotingResults"

inputVariable="processData"/>

</flow>

<!--the rest of the process is not shown-->

</faultHandlers>

</scope>

<reply partnerLink="Internal" portType="tns:processPort"

operation="call_Collect_Votes" variable="processData" createInstance="Yes"/>

</sequence>

</process>

224 BPMN Adopted Specification

12.4 The End of the Process

Figure 12.6 shows the last section of the Process, which includes a complex set of Decisions and loops.

Figure 12.6 - The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in the section above). It contains
four Decisions that interact with each other and create loops to upstream activities.

Yes

No

Yes

2nd
T im e?

Issues w /o
M ajority?

R educe to
Tw o Solutions

E-M ail Voters
that have to

C hange Votes

D id Enough
M em bers

Vote?

Have the
m em bers

been warned?

R educe num ber of
Voting M em bers
and R ecalculate

Vote

R e-announce
Vote w ith

warn ing to voting
m em bers

From Task:
"E-M ail R esults o f

Vote"

To Sub-Process:
"C ollect Votes"

To Sub-Process:
"D iscussion C ycle"

To Task:
"Announce Issues

for Vote"

No

Yes No

No

BPMN Adopted Specification 225

The first Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the voting members are required to
approve any solution to an issue. If less than two-thirds of the voting members cast votes, which sometimes happens, the
issues can’t be resolved. This Decision Flow to another Decision for both of its Alternatives. The “No” Alternative is
followed by the “Have the Members been Warned?” Decision. If a voting member misses a vote, they are warned. If they
miss a second vote, they lose their status as a voting member and the voting percentages are recalculate through a Task
(“Reduce number of Voting Members and Recalculate Vote”). If they haven’t yet been warned, then a warning is sent and
the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given two
chances before it goes back to another cycle of discussion. The first time will see a reduction of the number of solutions
to the two most popular based on the vote (more if there are ties). Some voting members will have to change their votes
just because their solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process
without Start and End Events can be used to create a simple set of parallel activities. Informally, this is called a “parallel
box.” It is not a special object, but another use of Sub-Processes. For simple situations, it can be used to show a set of
parallel activities without the extra clutter of a lot of Sequence Flow. In actuality, these two Tasks cannot actually be done
in parallel, but they are modeled this way to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of
voting, then the process Flow back to the “Decision Cycle” Sub-Process.

12.4.1 Mapping to BPEL4WS

As mentioned above, the entire contents of this segment follow a Timer Intermediate Event, which means they are
contained in the faultHandlers of the scope within the “Collect Votes” process.

• Each of the Decisions in this section will map to a BPEL4WS switch.

The First Decision

The first Decision, “Did Enough Members Vote?,” Flow to another Decision for both of its Alternatives.

• Thus, each of the switch cases will contain another switch.

The “No” Alternative is followed by the “Have the Members been Warned?” Decision.

• Each Alternative from this Decision is followed by a Task, which maps to Invokes (one synchronous and the other
asynchronous).

The “No (default)” Alternative leads to a loop.

• This looping is handled by using an invoke (asynchronous) to the “Collect_Votes_Derived_Process” process, which
was created just for the purpose of this loop (since it is in the context of a more complex looping situation).

Notice that the “Issues w/o Majority?” Decision can be reached through the alternative paths from two different
Decisions. This creates a situation that has two impacts on the Mapping to Execution Languages. First, it creates a section
of the Process in which the Alternatives from two Decisions overlap. This is possible in a graph-structured Diagram like
BPMN, but in a block-structured (and acyclic) language like BPEL4WS, these two sections cannot overlap because they
have different block boundaries. This means that this section must be repeated in some way in both of the appropriate
switch case activities. All these elements could be actually duplicated or they can be separated into a derived process and
then invoked from the appropriate place. The later method was used in this example (see Example 12.5 and Example
12.6).

226 BPMN Adopted Specification

Note – At this point, BPMN does not specify whether a reused section of a BPMN Diagram should map to a derived process
that is invoked from each location of duplication, or whether the section should remain intact and be duplicated in each
appropriate location. This is left up to the specific implementation of BPMN since both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flow into the “Issues w/o Majority?” Decision has to do with how
the three visible loops are created (actually there are five loops). Normally, Sequence Flow loops will map to a BPEL4WS
while. If there are multiple loops in the Process they have to be physically separated or completely nested because of the
block-structured nature of the BPEL4WS looping elements. The alternative paths of the Decisions cannot be mixed and
still maintain the BPEL4WS blocks they way that the end of the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a set of derived processes that
can reference each other and also themselves. In this way, a block-structured language can simulate a set of interleaving
loops (as seen in a graph-structured Diagram).

• Thus, in this BPMN example, derived processes were created to mark places where loops can be targeted within the
BPEL4WS code from the “downstream” elements.

• A BPEL4WS invoke is used to re-perform activities that had already been executed in the process.

BPMN Adopted Specification 227

BPEL4WS Sample for the End of the Process

Example 12.5 displays the BPEL4WS code for first part of the end of the “E-Mail Voting Process.”

<!--This segment of the code is within the context of the “Collect

Votes” nested process-->

<catch property="tns:OneWeek" type="duration">

<!--The BPMN Diagram shows that the Timer Intermediate Event connects directly to the
rest of the Process. Thus, they will show up in this activity set-->

<!--The first two actions are not shown-->

<sequence>

<invoke name="PrepareResults" partnerLink="internal" portType="tns:internalPort"

operation="sendReceiveResults" inputVariable="processData"

outputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter" portType="tns:emailPort"

 operation="sendVotingResults" inputVariable="processData"/>

<switch name="DidEnoughMembersVote">

<!-- name="No" -->

<case condition="bpws:getVariableProperty(ProcessData,NumVoted)>

(.7)*(bpws:getVariableProperty(ProcessData,NumVWGM))">

228 BPMN Adopted Specification

Example 12.5 - Sample BPEL4WS code for the last section of the Process

<switch name="Havethemembersbeenwarned">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,VotersWarned)=true">

<sequence>

<invoke name="ReducenumberofVotingMembersandRecalculateVote"

 partnerLink="internal" portType="tns:internalPort"

 operation="sendReceiveNumVoters" inputVariable="processData"

 outputVariable="processData"/>

<!--Some elements of the process were separated into a derived

process since they would have been repeated. They would have

been repeated because they are arrived by alternative paths that

 do not close a set of alternative paths. -->

<invoke name="Issues_wo_Majority_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Issues_wo_Majority_Derived_Process"

inputVariable="processData" outputVariable="processData"/>

</sequence>

</case>

<!-- name="No (otherwise)" -->

<otherwise>

<sequence>

<invoke name="ReannounceVotewithwarningtovotingmembers"

partnerLink="WGVoter" portType="tns:emailPort"

operation="sendReannounceVote" inputVariable="processData"

outputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal"

 portType="tns:processPort"

operation="call_Collect_Votes_Derived_Process"

 inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<!-- name="Yes (otherwise)" -->

<otherwise>

<!-- Some elements of the process were separated into a derived process since they

would have been repeated. They would have been repeated because they are

arrived by alternative paths that do not close a set of alternative paths. -->

<invoke process="Issues_wo_Majority_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Issues_wo_Majority_Derived_Process"

inputVariable="processData" outputVariable="processData"/>

</otherwise>

</switch>

</sequence>

</catch>

BPMN Adopted Specification 229

Example 12.6 shows the BPEL4WS code for the Process from the “Issues w/o Majority?” Decision until the end of the
Process or loops.

• The mappings are a fairly straightforward set of switches.

If all issues are resolved, then the Process is done. If not, then another Decision is required.

• The “parallel box,” as is any forking situation, will map to a BPEL4WS flow.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process.

• This looping is handled by using an invoke (asynchronous) to the “Announce_Issues_Derived_Process” process, which
was created just for the purpose of this loop.

If there has already been two cycles of voting, then the process Flow back to the “Decision Cycle” Sub-Process.

• This looping is handled by using an invoke (asynchronous) to the “Discussion_Cycle_Derived_Process” process,
which was created just for the purpose of this loop.

230 BPMN Adopted Specification

Example 12.5 displays the BPEL4WS code for the final derived process of the “E-Mail Voting Process.”

Example 12.6 - Sample BPEL4WS code for derived process for repeated elements

<process name="Issues_wo_Majority_Derived_Process">

<sequence>

<receive partnerLink="Internal" portType="tns:processPort"

operation="call_Issues_wo_Majority_Derived_Process" variable="processData"

createInstance="Yes"/>

<switch name="IssueswoMajority">

<case name="Yes" condition="NoMajority=true">

<switch name="2ndTime">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,VotedOnce)=true">

<!--This is done to do the complex looping situation. -->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Discussion_Cycle_Derived_Process"

inputVariable="processData" outputVariable="processData"/>

</case>

<!-- name="No (otherwise)"-->

<otherwise>

<sequence>

<flow>

<invoke name="ReducetoTwoSolutions" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveSolutions"

 inputVariable="processData" outputVariable="processData"/>

<invoke name="EMailVotersthathavetoChangeVotes" partnerLink="WGVoter"

 portType="tns:emailPort" operation="sendVoteWarning"

 inputVariable="processData"/>

</flow>

<invoke process="Announce_Issues_Derived_Process" partnerLink="Internal"

portType="tns:processPort"

operation="call_Announce_Issues_Derived_Process"

inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<otherwise name="Nootherwise">

<!-- This is one of the two ways to the end of the Process. -->

<empty/>

</otherwise>

</switch>

<reply partnerLink="Internal" portType="tns:processPort"

operation="call_Issues_wo_Majority_Derived_Process" variable="processData"

createInstance="Yes"/>

</sequence>

</process>

