http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

{ Visual Design : BPMI BPMN
. OMG BPDM interchangeable model:
i BPMI BPSM

: BPEL Extensions:
! BPMI BPXL

Choreography:[Execution: | BAM:
W3CWS-CDL | OASISBPEL | BPMIBPQL

Web Services Stack
W3C WSDL, QASIS DDy

At the top of the stack is the visual process design layer, based on BPMN. Below it is BPSM, in which BPMN visual
models are represented in a common, interchangeable metamodel form, suitable for import into the execution layer
based on the OASIS group's BPEL (discussed in Chapter 5), which is extended by BPXL. BPEL, in turn, runs atop a
web services messaging and transport layer, whose major standards include the W3C's WSDL and the OASIS UDDI .
BPEL shares the web services base with the standard BAM query service BPQL, as well as the W3C's WS-CDL
choreography (discussed in Chapter 8). BPQL enables business monitoring of BPEL processes, and WS-CDL defines
the global contract governing the partner interactions of BPEL processes.

This stack is intriguing for several reasons:

¢ Not all pieces are based on BPMI standards. (The BPMI pieces are shaded.) BPMI embraces standards—such
as BPEL, WS-CDL, and the core web services standards—of other organizations.

e Some of the BPMI pieces (dotted in the figure) are not currently published. If the stack were to be
implemented today, the implementers would need to find suitable substitutes for BPSM, BPXL, and BPQL.

e BPML is nowhere to be found! Its place—the web service-based execution spot—seems to have to been stolen
by BPEL. The BPMI position paper[*] concedes that the BPEL standard, BPML's most formidable competitor,
has won the XML execution language war, and by virtue of "might makes right" is a better fit than BPML for
the stack.

*1 BPMI, "BPMN and BPEL4WS: A Convergence Path Toward a Standard BPM Stack," http://www.bpmi.org, August 2002.

e The same BPMI position paper recommended Web Services Choreography Interface (WSCI) as the
choreography piece, but since then BPMI has adopted WS-CDL, the W3C's official approach.

This chapter describes BPMN and BPML in detail and introduces the main aspects of each language through several
feature-rich examples; each language is also rated on its support for the P4 patterns introduced in Chapter 4."]

*1 Interestingly, the BPMN specification provides a BPEL mapping, which facilitates BPEL XML representation of BPMN diagrams; this
mapping is explored at a high level later in the chapter. The BPMN specification makes no mention of BPML, though one would expect a
BPMN-to-BPML mapping to resemble the BPMN-to-BPEL mapping.

6.1. BPMN

BPMN is a graphical flowchart-like language intended for use by business analysts and developers to build business
process diagrams (BPDs) . A BPD conveys in pictures what BPML and BPEL encode in XML, but it serves a iifferent

purpose: BPMN is for graphical design, whereas BPML and BPEL are for execution. The BPMN specification["]
attempts to bridge the gap by providing a mapping from BPMN to BPEL (but not, interestingly, to BPML); the
mapping specifies rules to generate BPEL from a BPD, enabling the execution of a BPD. Figure 6-2 shows how a
typical BPMN tool is used in the design process.
%+
[*1s. White, "Business Process Modeling Notation,” Version 1.0. http://www.bpmi.org, May 2004.
In addition to BPEL export, the tool also supports BPSM metamodel import and export, allowing the BPMN tool to
exchange processes with those developed in other tools. The message broker example developed in Chapter 11
uses ITpearls' MS Visio-based BPMN tool for the design of message broker processes. ITpearls, alas, does not
currently include any of these import and export features.

Figure 6-2. Use of BPMN

of 19 7/29/2007 2:29 P

of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Import from
metamodel

l
ﬁ] 1

BA BPMMN visual design tool Save BPDs
m 3
Developer o,
i /-*E;.
&,
\f—‘& "??

i~

oS

6.1.1. BPMN Example

The first step in learning a new language is to look at the implementation of "Hello, World!" In our case, we study
"Hello, Claim!," which is an insurance claims handling process and is shown in Figure 6-3.

The process receives a claim (Get claim), examines it (Examine claim), and then splits into one of three
directions, depending on whether the claim has been approved (Process approval), rejected (Process reject), or
passed along for further analysis (analysis). The analysis option has a time limit; if it is not performed quickly
enough, it is aborted (stuck), and a special escalation process (Escalate, whose steps are enclosed in the
Escalate box) is run. The escalation process behaves much like its parent: it begins by examining the claim, then
either approves or rejects it; no further analysis is permitted in an escalation. The parent process completes when
its conditional path—approval, rejection, analysis, or escalation—completes.

Several types of symbols are used in this diagram: events, gateways, atomic activities (or tasks), compound
activities (or subprocesses), sequence flow, and text annotations. Events, drawn as small circles, mark the start
(e.g., Get claim) and end points of the process, as well as the intermediate timeout condition (stuck) that occurs
during analysis. Gateways (diamonds) help mark the conditional split and join portion of the process. Activities
(boxes) represent actual work performed. Tasks (e.g., Examine claim) are single actions, whereas subprocesses
perform arbitrarily complex logic. A subprocess can be drawn either collapsed or expanded; a collapsed process
(e.g., Process reject) is drawn with a plus sign, its details hidden, but assumed to be documented in another
diagram; an expanded process (e.g., Escalate) has its internal logic drawn inside of it. Sequence flow is the set of
arrows connecting together the other pieces; arrows labeled with text (e.g., arrow between gateway and Process
approval) are conditional, followed only if the condition is true. Text annotations (open-ended boxes) present
instructional comments.

Figure 6-3. BPMN insurance claims process

7/29/2007 2:29 P

of 19

Sequence
flow

Examine claim
Get claim

o [Atomic activity: task

Messade event
starts the process

— <X

Conditional
sequence not
flow. Follow

only if “not

sure” is true

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Compound activity:
collapsed subprocess

— Process approval

approve

-

=
XOR dateway:
split
Process reject
reject H
sure

I Analysis

XOR gateway:
Alioin

O
[End event

Intermediate timer event.

L | (| Examine claim

|, ><>

Start event
triggered
by call of
subprocess

rej

ect

Process reject

[l

Stuck “.|When timer expires, interrupt
analysis activity and perform
escalate subprocess.

Escalate | Process approval
Expanded 2|
subprocess

approve

i
&0
!

6.1.2. BPMN in a Nutshell

This section examines the essential language constructs that designers need to understand in order to create a

BPMN process: the basic process structure, variables and assignments, exception handling and compensation, split
and join, loops, participant exchange, transactions, and extensions. Before delving into the details of the language,
we'll first introduce the basic elements in a BPMN process—events, activities, sequence flows, and gateways—in a bit

more detail.

An event, the first basic element of BPMN, is an occurrence that triggers a business process. Events are categorized
by the stage at which they occur in a process (start, intermediate, or end) and by type (basic, message, timer, rule,
exception, cancellation, compensation, link, multiple, or termination). The shape of an event is a small circle; a start
event has a thin border, an end event a thick border, and an intermediate event has a double border. Figure 6-4

illustrates the complete set of events and how they are depicted.

Table 6-1 describes the role of events in more detail.

Figure 6-4. BPMN events

7/29/2007 2:29 P

of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Start Intermediate End Name
o] O | O pasic
vessage
® Timr
e
Excepton

Cancellation

Compensation

®

Link

®

® 0 6 ® 6 ® 6|0

Multiple

SANORNORRORNVENS

Termination

7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Table 6-1. BPMN event description

Type Start Intermediate End

Basic Placeholder event or the start of a Placeholder Placeholder or end of a
called subprocess. subprocess.

Message Process is started by receipt of a Process is waiting for a message A message is to be sent to a

message (e.g., the invocation of a (e.g., wait for response from a participant process (e.g.,
web service method implemented by participant to which this process call its web service).

the process). has sent a request).
Timer The start event defines a schedule A point in a defined schedule
for when it triggers (e.g., every has been reached.

Tuesday at midnight).

Rule A condition, defined by the process, A condition is met. Used only for
is met (e.g., process starts when a exception handling.
stock's price hits its 52-week high).

Exception Throw or catch an error. Generate an error.

Cancellation Perform cancellation for a given Cancel the transaction.

activity.

Compensation Trigger and perform Perform compensating

compensation handling. action.

Link The link start event connects to the Link to or from another activity. Connect to the link start of a
link end event of a sibling process. sibling process.

Multiple Two or more triggers can start the Two or more triggers can When the process ends,
process; if any one of them occurs, continue a waiting process; if several results are required
the process starts. These triggers any one of them occurs, the (e.g. several messages need
can be message, timer, rule or link process resumes. to be sent).
types.

Termination Terminate all activities in

the process. Perform no
exception handling or
compensation.

An activity, the second basic element of BPMN, is a step in a process that performs work. In BPMN, an activity is
either atomic or compound. An atomic activity, also known as a task, performs a single action. A compound activity,
also known as a process, has its own set of atomic or compound activities , as well events, gateways, and all other
BPMN constructs. Processes are hierarchical: a process can have subprocesses, each of which can have
subprocesses, and so on.

An activity is drawn as a box with rounded edges. When shown in a parent process, a child process is drawn as a
single box bearing a plus sign (+). The plus sign represents the collapsed view of the process; the full detail is
drawn in a separate diagram. Any activity—task or process—can be marked up with symbols representing
compensation, multiple instances, and loops; additionally, a process can have the markup symbol tilde (~) for ad
hoc processing. These possibilities are depicted in Figure 6-5.

Figure 6-5. BPMN activities

of 19 7/29/2007 2:29 P

of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Task

Collapsed subprocess

FH

Compensation Ad hoc
- m ~ m
Multiple instances Loop

1l [

O H

A compensated activity is one that has special compensation logic to revert it (undo its effect) after completion. An
ad hoc process contains a set of activities that can occur in any order; the control flow is unstructured. Loop and
multiple instance activities are described in the later section "Loops." Table 6-2 summarizes the BPMN specification's
suggested task types.

Table 6-2. BPMN task types

Use Description

Service Calls a web service

Receive Waits for a message (an alternative to an event construct)
Send Sends a message

User, Manual Task is performed by a human participant (e.g., approval)
Script Logic encoded in a programming or scripting language (e.g., run a piece of Java code)

Reference Uses the definition of another task in the process; shares the definition rather than duplicating it

Sequence flow, the third basic element of BPMN, is the flow of control in a process, and is represented by arrows
connecting source and target activities, events, or gateways. Figure 6-6 shows the three types of sequence flow
arrows.

Figure 6-6. BPMN sequence flow arrows

The first arrow represents normal, unguarded flow from source to target. The second symbol is default flow, used in
cases where control splits into multiple directions, each path depending on the evaluation of a condition; it fires only
if none of the other guarded transitions fired. The third is a guarded transition, traversed only if its associated
conditional expression evaluates to true; the diamond at the end of the arrow is not required when the transition
originates from an XOR split.

A gateway, the final basic BPMN element, is a special controller of splits and joins. This element is discussed in more
depth in the later section "Split and join."

6.1.2.1. Basic process structure: start, end, activities, sequence

A basic BPMN process has a start event , one or more activities, and an end event. The process in Figure 6-7, for
example, starts with a message event that receives a partner request, and then executes activities to handle the
request and send a response to the partner, before closing with a basic end event.

7/29/2007 2:29 P

of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Figure 6-7. BPMN sequence example

Send partner N

©&— | Handle request response
Partner
request

Besides activities, intermediate events can also be key steps in the mainline sequence of a process. A typical
example is the process shown in Figure 6-8, which sends a message to a partner application and then needs to
waits for response before continuing. This example also shows that the end event can perform useful work; in this
case, sending an acknowledgment message to the partner.

Figure 6-8. BPMN sequence example with intermediate event

Send Msg to @ »
{3 ' partner @
Start 2PM Wait for Send pariner ACK
partner response

Could alsa be
areceive task

6.1.2.2. Variables and assignments

In BPMN, processes and activities can have variables (known as properties), assign values to them, and make
decisions based on their values. Though variables are not shown graphically in a BPD, BPMN includes them in its
object model, chiefly to facilitate a mapping to BPEL.

Most BPMN editors, including ITpearls, provide an attribute editor to manipulate variables and other data associated
with processes, activities, or other graphical nodes. Figure 6-9 shows how two String type properties—ClaimID and
SubscriberID—aredefined for the Escalate subprocess.

Figure 6-9. BPMN process properties in ITpearls' attribute editor

7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Attribute Explorer b 4
,{‘ Sub-Process _q]
2
Escalate
Diagram Ehmerll
St;l.m.s : Ik -
Name ClaimID
Type String
B
Name SubscriberlD -
Type String
StanQuartity 1 |
Loop Type MNone
lsATmsactiaﬁ FaEe [:]

For the mechanics of variable usage, consult the BPMN specification.
6.1.2.3. Exception handling and compensation
Figure 6-10 illustrates the BPMN approach to exception handling.

Figure 6-10. BPMN exception handling
Enroll customer Send welcome

package
A A

v

Fix
FH

{a) Exception in Enroll customer

Enrall customer
Y @ Throw
bad

credit

Check credit |—»

Add to system

{b) Closeup of Enroll customer subprocess

Part (a) shows the catching and handling of an exception in the subprocess Enroll customer. When Enroll
customer completes normally, it transitions to Send welcome package. But if an exception occurs during its

of 19 7/29/2007 2:29 P

) of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

execution, the intermediate error event on the boundary of Enroll customer catches the error and passes control
to the subprocess rix, which serves as a fault handler for Enrol1l customer. Part (b) shows that an intermediate
error event, when not on the boundary of an activity, effectively throws an exception, which triggers exception
handling of the parent process. The event Throw bad credit breaks the normal flow of the parent process, Enroll
customer, and precipitates the handler in Fix from part (a).

In compensation, an activity is run to reverse the effects of another activity. For example, in Figure 6-11, Ccancel
compensates Reserve hotel.

Figure 6-11. BPMN compensation

Reserve hotel |—»| Customercalls Compensate @

to cancel “Reserve Hotel”

1
Undo reservations
L >| Cancel

The notation is to place a compensation intermediate event (resembling a "rewind" symbol) on the boundary of the
activity to be compensated, draw a dotted arrow (known as an "associated" in BPMN parlance) from the
compensation event to the boundary of the compensating activity, and mark a compensation symbol inside the
boundary of the compensating activity. The compensating activity must be self-contained; it cannot have any
inbound or outbound sequence flow connections. The job of a compensating activity is strictly to perform the
required reversal logic.

Compensation is triggered in one of two ways:
e With an explicit compensation event, as with the event Compensate "Reserve Hotel" shown earlier.

e If the activity to be compensated is part of transaction subprocess that is cancelled. This scenario is
discussed in the later section "Transactions."

Compensation can apply to transactional and nontransactional activities alike. For transactional activities,
compensation is not the same as rollback. Only a completed activity can be compensated; if that activity is
transactional, because it has completed, its transaction has already committed.

6.1.2.4. Split and join

BPMN uses the gateway element to model split and join patterns, which represent common programming control
structures such as if-then, switch, and all. A gateway branches and merges paths in a process. The
diamond-shaped symbol is well known in flowchart languages as a decision point, but BPMN expands its use to
model patterns such as AND split and join and deferred choice. Furthermore, in BPMN a gateway has two modes: it
splits one incoming path into multiple outgoing paths (which we will refer to as split mode), and merges several
incoming paths into one outgoing path (join mode). The BPMN gateway symbols are shown in Figure 6-12.

Figure 6-12. BPMN gateways

Exclusive OR

Exclusive OR

Exclusive OR
{Event-based)

Exclusive OR

Complex

Parallel

D $0 0B

7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

The first gateway, the exclusive OR, uses if-then-else and switch with mutually exclusive cases as a control
structure. In split mode, it evaluates a separate condition on each of its outgoing paths and lets through the first
path whose condition evaluates to true; all others are ignored. Exactly one condition must be true; a default branch
can be specified in case none of the other branches fire. In join mode, the exclusive OR gateway lets through the
first of its multiple incoming branches and discards all others. Figure 6-13 illustrates the behavior by showing an
activity (Finalize claim) that runs when either Process approval or Process rejection completes, and an

activity (Evaluate claim) that splits to Process approval if the condition approved is satisfied and to Process
rejection otherwise.

Figure 6-13. BPMN exclusive OR gateway

»| Process approval
Approved PP

Evaluate claim —r® ®—o Finalize claim

Rejected

\J

Process rejeclion

The second gateway, the exclusive OR (event-based), uses a pick control structure. In split mode, each outgoing
branch leads to an event node. The gateway lets through the branch having the first triggered event, and ignores all
others. The join mode is not commonly used. For example, in the process in Figure 6-14, when the activity Request
completes, the process waits for one of the two events—Receive accept Or Receive reject—to occur.

Figure 6-14. BPMN exclusive OR gateway for events
Receive accept

— - Process accepl
Requeslt |—= @
——» & »| Process reject

Receive rejecl

The third gateway, the inclusive OR, uses a switch with overlapping cases as a control structure. The split mode is
similar to exclusive OR but lets through each outgoing path whose condition evaluates to true. The join mode blocks
passage until each expected executing incoming path enters it. The gateway knows in advance how many active
inputs to expect. Figure 6-15 illustrates both behaviors: activity Get employee change splits to Send to HR Or Send
to payroll or both, depending on the evaluation of conditions promotions and raise; activity Log change waits

until Send to HR Or Send to payroll or both of these complete, depending on which paths the splitting gateway let
through.

Figure 6-15. BPMN OR gateway

I” Send to HR _l
Getemployee | _ promotion —
change <! E).l oo
raise < >—’
. Send to payroll AT

The fourth gateway, complex, uses a control structure that is quite unique to BPMN. The split mode is not commonly
used. The join mode evaluates an expression to determine which of the incoming paths to let through. As an
example, in Figure 6-16 the gateway waits for two of the three parallel activities—Good credit, Natural citizen,
and No criminal record—before granting security clearance.

Figure 6-16. BPMN complex gateway

of 19 7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

L

Mo criminal record ﬂ
- Grant security
Matural citizen |—» @—v clearance
Good credit AT

k)

Initiate check f—» @

The final type, the parallel gateway, uses all control structures in BPML and flow in BPEL. In split mode, it lets
through each outgoing path. In join mode, it blocks until each incoming path completes. Figure 6-17 illustrates
these two behaviors: when activity Accept claim completes, the activities Ssend email result and Credit
subscriber bank account are run in parallel; Mark claim done, however, starts only when both Send email
resultand Credit subscriber bank account complete.

Figure 6-17. BPMN AND gateway

Acceptclaim |-» @

Send email
result

Mark claim done

L@J

Credit subscriber
bank account

NOTE

The BPMN specification is laden with references to token passing, betraying its dependency on the ideas of
the Petri net. For example:

o A parallel gateway sends a token for each of its outgoing arrows. A parallel gateway waits for a token
on each of its incoming arrows.

e An exclusive gateway sends a token on exactly one of its outgoing arrows, namely the one whose
condition is true. An exclusive gateway waits for exactly one token from its incoming arrows.

o When multiple arrows converge on an activity without first passing through a gateway, each token
that comes through will trigger the activity.

e When multiple arrows emanate from a single activity (known as "uncontrolled" flow in BPMN), a token
is generated on each arrow.

6.1.2.5. Loops

BPMN's approach to looping is powerful but obscure. In most process languages, a loop is a specific type of
compound activity that iterates over the set of activities inside of it. For example, the BPEL while loop in the
following code sample repeats a sequence of invoke activities (A and B) for as long as its specified condition
evaluates to true:

<while condition=". . .">
<sequence>
<invoke name="A" . . . />
<invoke name="B" . . . />
</sequence>
</while>

In BPMN, looping is an attribute of an activity. To make an activity loop, simply play with the attributes of the
activity, and it will loop as directed. If BPEL were designed this way, its code would resemble the following, in which
the sequence activity itself controls whether and how to loop:

<sequence looping="true" loopcondition=". . .">
<invoke name="A" . . . />
<invoke name="B" . . . />

</sequence>

of 19 7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

In BPMN, any activity (either a task or a subprocess) can be configured either to not loop, to loop in standard mode
(while or until loops), or to support multiple instances (foreach looping). The notation for standard and multiple
instance (MI) loops is shown in Figure 6-18. (An activity with standard looping has a circular arrow mark in the
bottom center of its box; an activity with MI has a pair of vertical parallel bars.)

Figure 6-18. BPMN notation for standard and multiple instance (MI) loops

Activity wi‘l_!1 standard

Activity with M1
11

Figure 6-19 shows the BPMN representation of the BPEL while loop: activities A and B run sequentially in a process
AB sequence that is configured with standard looping.

Figure 6-19. BPMN while loop for a sequence of activities

AB sequence

A - B

o

Table 6-3 summarizes the settings for a standard loop.

Table 6-3. Standard loop settings

Setting Description

Condition An expression that determines whether to continue looping.

Test time: before, When to test the condition: before the activity is run, or after it is run. In the former case, the

after loop will behave as a while; in the latter, as an until.

maxLoops An upper boundary on the number of iterations.

Loop counter Used internally. Starts at zero, is incremented by one for each iteration, and is compared with
maxLoops.

If the test time is set to before, the logic of the loop is the following:

While (cond and loopCounter < maxLoops)
Perform Activity

Otherwise, the logic of the loop is the following:
Do

Perform Activity
Until (cond and loopCounter >= maxLoops)

In contrast to the standard loop, the MI loop is rather complicated. Table 6-4 summarizes the MI loop settings.

Table 6-4. MI loop settings
Setting Description

MI condition An expression that determines the number of instances to run.

of 19 7/29/2007 2:29 P

L of 19

Setting
Loop counter

Ordering:
sequential,
parallel

Flow condition:
none, one, all,
complex

Complex
condition

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Description
Used internally as loop counter.

Determines whether the instances are run sequentially or in parallel.

Used only if the order is parallel. none means that as soon as each instance of the activity is
executed, the next activity in the process is executed. one means that the next activity is
executed only after the first instance completes; subsequent iterations execute, but do not
continue onto the next activity. al1 means that the next activity executes only once all instances
have completed. complex means that the "complex condition" expression must be evaluated to
determine the rule for how to handle the next activity; complex can be used to model patterns
such as N-out-of-M join.

A condition that determines when and how many times to execute the next activity.

Sequential processing is simple:

For counter =

0 to MI condition

Perform activity
Perform next activity

Parallel processing with a flow condition of a11 resembles the following:

For counter =

0 to MI condition

Spawn activity
Wait for all activities; when an activity completes, do nothing
Perform next activity

Parallel processing with a flow condition of one resembles the following:

For counter =

0 to MI condition

Spawn activity
Wait for one activity; when it completes, perform the next activity

Parallel processing with a flow condition of none resembles the following:

For counter =

0 to MI condition

Spawn activity
Wait for all activities; for each completed activity, perform next activity

Parallel processing with a flow condition of complex resembles the following:

For counter =

0 to MI condition

Spawn activity
Wait for all activities
For each completed activity
If complex condition says perform next activity, do so

Figure 6-20 shows scenarios in which each type of looping would be used.

Figure 6-20. BPMN loop scenarios

7/29/2007 2:29 P

 of 19

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Hunt until Make
Standard |Gﬂp successful bﬂﬁl‘ﬂil‘lg
L
Get supplier Check
@parallel-NGNE - supplier
nm inventory

Ml sequential or |GEt S reports Process

parallel-ALL e | claim
-
Getlofs Process
M| parallel-ONE reI|I:u|_||'ts ™ claim
*
Wi parallel- Get3of 5 Process
COMPLEX “*I'ff_'l“ ™| dlaim
.

Table 6-5 summarizes each of these scenarios.

Loop type
Standard

MI parallel-NONE

MI sequential or

parallel-ALL

MI parallel-ONE

Table 6-5. Description of BPMN loop scenarios
Description

Hunt airline schedules for an available flight. When one is found, book it.
Loop through a list of suppliers. For each supplier, query its inventory.

For the investigation of an insurance claim, take reports from five witnesses (either
sequentially or in parallel). When all five have completed, process the claim.

For the investigation of an insurance claim, take reports from five witnesses in parallel. As
soon as one completes, process the claim, but in the meantime, let the others complete too.

MI parallel- coMpLEX Similar to the previous case, but do not process the claim until three reports have completed.

6.1.2.6. Participant exchange

BPMN provides a rich framework for modeling interparticipant processing, which includes swim lanes and pools,
message flow, message events, send and receive tasks, and message correlation.

A swim lane is a pool and each of its lanes. A pool represents the activities of one participant—often a company—in
collaboration; a lane in a pool represents a subdivision of the participant—often a department or division of the
company. Swim lanes help convey the sense that a process spans multiple participants; it depicts who does what
and how the interactions are structured. For example, consider the collaboration of a supplier and a financial
institution. The supplier calls the financial institution to authorize payment. The supplier, in turn, is divided into sales
and distribution departments, which manage different parts of the supplier's process. Figure 6-21 illustrates this

scenario.

Figure 6-21. BPMN swim lane, adapted from BPMN specification, V.1, p.104

7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

=
=]
3
= Authorize credil
sl O— card —Q
E: M
= & v
= o
I I_I
B
—
c I
e 0!
F - Pack goods —| Ship goods —= ()
I P
5 = i ! M
- L
(=1 [
= .
Yy I_' 1
&
E Authori
] uthorize -
v O payment [Ship order

Message flow, symbolized by a dashed arrow, such as the arrow between supplier and financial institution in Figure
6-21, shows the flow of messages, or the data flow, between participants. The solid arrows of sequence flow, by
contrast, capture process flow, or inter-activity control movement.

NOTE

The BPMN authors favor showing both kinds of flow in the same diagram, but this practice has drawbacks,
the most obviously of which is clutter. Showing both types of flow is also common in UML activity diagrams.

Message events and send and receive tasks are also supported. Table 6-6 summarizes the five main BPMN message
-exchange process elements and their BPEL mapping.

Table 6-6. BPMN message exchange elements

Type Meaning BPEL equivalent From/to participant
Start message event Inbound web service Receive and create instance From

Intermediate message event Inbound web service Receive From

End message event Outbound web service Invoke or reply To

Send task Outbound web service Invoke To

Receive task Inbound web service Receive From

BPMN's support for message correlation (which allows a process to determine whether a given inbound message,
based on key data, belongs to its conversation) is something of an afterthought. Specifically, BPMN allows a process
or activity property to be designated as a correlation set. Such a property can have child properties that represent
members of the correlation set. Refer to the BPMN specification for the mechanics of the approach.

6.1.2.7. Transactions

BPMN also supports the notion of the transaction, in which a subprocess can be marked to allow it to be executed as
a single unit of work. If the subprocess reaches its end point successfully, it is committed. If it receives a
cancellation event, the transaction is rolled back, compensation is applied to any subactivities that require it, and a
special cancellation handler is executed. A transactional subprocess is drawn with a thick border line. The
cancellation handler is connected by a sequence flow to an intermediate cancel event on the border of the
subprocess.

As an example, in Figure 6-22, if a cancellation occurs in the transactional subprocess Invite to conference, the

 of 19 7/29/2007 2:29 P

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

updates in Add to meeting list and Add to dinner list are rolled back, the Reserve hotel activity is
compensated, and the cancellation handler Manual fix is executed.

PRIVATE, ABSTRACT, AND COLLABORATIVE PROCESSES IN BPMN
BPMN supports three types of processes:

e Private (internal), representing the full orchestration logic of particular participant. Private
processes can be used to model BPEL executable processes.

e Abstract (public), representing the publicly observable interparticipant exchange of a particular
participant. Abstract processes can be used to model BPEL abstract processes .

e Collaborative (global), which show the overall public exchange between a set of participants.
These processes are similar to the collaborations of BPSS (see Chapter 9) or WS-CDL (Chapter
8).

Fig_;ure 6-22. BPMN exception handling

Invite to conference

O Add lﬂlil;nteellng Reserve hotel || Checkit _\-\—"'@'
'Eh‘—uk—ro
Undo reservations
Add to dinner EEEEEEE >| Cancel
list -
Manual fix

A cancellation can be triggered either explicitly, by a cancellation end event in the subprocess, or implicitly, by a
cancellation message from the transaction manager of the engine. The use of a cancellation event is shown in Figure
6-22: when the check it activity is executed, it transitions to one of two end events: a normal end, if the variable
ok evaluates to true, or a cancellation event, which cancels the subprocess.

6.1.2.8. Extensions

BPMN can be extended in two ways: by adding new symbols or by modifying existing symbols. Considering the
importance of BPMN's mapping to BPEL (discussed in the next section), a key BPMN extension follows the BPELJ
extension of BPEL by providing Java variables and expressions, Java-based participants, and Java-based message
events and send and receive tasks. These changes would be noninvasive, affecting only the behind-the-scenes
attributes of core BPMN constructs, with no impact to the visual representation.

6.1.3. BPEL Mapping

The BPMN specification includes a 64-page chapter on BPEL mapping , which bridges the gap between graphical
design and executability. BPMN diagrams are of little consequence unless they can actually be deployed and run.
The BPEL mapping allows the generation of BPEL XML from BPMN diagrams, thus making it possible to run BPMN on
BPEL engines. Significantly, the BPMN specification omits, and makes no mention of, a mapping to BPML; the BPMI,
as described previously, places BPEL on its stack in place of BPML.

The details of the mapping are difficult. This section is a very high-level overview; you should consult the BPMN
specification for the complete picture. BPEL has fewer constructs than BPMN, which complicates the mapping. One of
the weaknesses of BPMN is its excess of features (e.g., multiple instance activities and the complex gateway); this
excess makes BPMN extremely expressive, but a chore to fit into the BPM stack. BPSM, described at the beginning
of this chapter, might help close the gap by providing a common metamodel for these languages. Table 6-7

presents the highlights of the mapping presented in the BPMN specification.

of 19 7/29/2007 2:29 P

 of 19

BPMN

Start event: all except
Multiple

Start event: Multiple
End event: Message
End event: Error

End event:
Compensation

End event: Terminate
End event: Link

Intermediate event:
Error

Activities: MI

Activities:
Subprocesses

Gateway: Exclusive
data-based

Gateway: Exclusive
event-based

Gateway: Inclusive
Gateway: Complex
Gateway: Parallel

Sequence Flow

Message Flow

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Table 6-7. BPMN mapping to BPEL

BPEL

receive element with createInstance set to yes.

pick element with createInstance set to yes.

invoke Or reply element.
throw element.

compensate element.

terminate element.

invoke element.

Error handler if on the boundary of an activity, throw otherwise.

Not a direct mapping. Use a variety of constructs.

Use invoke to spawn. Embedded subprocesses implemented in scope.

switch element.

pick element.

Multiple switch elements within a f1ow element.

No obvious mapping.

flow element.

Model the flow of control from one node to another either explicitly with flow 1ink
elements or implicitly with control structures such a sequence, while, Or switch.

No mapping.

6.1.4. BPMN and Patterns

BPMN is designed to implement most of the P4 patterns discussed in Chapter 4. White's paper[*] describes the
BPMN implementation for each of the patterns. Table 6-8 summarizes White's findings.

*1 Stephen White, "Process Modeling Notations and Workflow Patterns," BPTrends, March 2004.

Pattern

Sequence
Parallel Split
Synchronization
Exclusive Choice
Simple Merge
Multi-Choice
Sync Merge
Multi-Merge

Table 6-8. BPMN support for the P4 patterns
Compliance Approach

(+l = +')

+ + + 4+ + o+ 4+ o+

Normal sequence flow
Parallel gateway as splitter
Parallel gateway as joiner
Exclusive gateway as splitter
Exclusive gateway as joiner
Inclusive gateway as splitter
Inclusive gateway as joiner

Uncontrolled split and join

7/29/2007 2:29 P

) of 19

Pattern

Discriminator

Arbitrary cycles
Implicit Termination

Multiple Instances (MI) Without
Synchronization

MI With Design Time Knowledge
MI With Runtime Knowledge

MI Without Runtime Knowledge
Deferred Choice

Interleaved Parallel Routing
Milestone

Cancel Activity

Cancel Case

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential

Compliance Approach

(+r =r +')

+

+ + + o+ o+

Complex gateway as joiner to accept one out of M or N out
of M incoming paths

Sequence flow allows loops
Multiple end events allowed; first to trigger ends process

MI marker on activity

Use MI

More advanced use of MI

Relatively difficult coding

Exclusive data-based gateway as splitter

Yes! Ad hoc process

Exception handling

Exception handling or implicit termination

7/29/2007 2:29 P

