
Bruce Silver Associates
Independent Expertise in BPM

Bruce Silver Associates BPMS Watch www.brsilver.com/wordpress
 BPMN Training www.bpmessentials.com/
500 Bear Valley Road, Aptos CA 95003
Tel: 831.685.8803 Fax: 831.603.3424 E-mail: bruce@brsilver.com

BPMN and the Business Process Expert, Part 3:
The Art of Process Modeling

Summary: BPMN’s diagram semantics are expressive and precise, but the spec
doesn’t tell you everything you need to know to create effective models. Here
we go beyond the spec with nine tips for making your process diagram say
exactly what you mean. Third of six parts.

Author: Bruce Silver

Company: Bruce Silver Associates

Created on: 19 November 2007

Author Bio

Dr Bruce Silver is an independent industry analyst and consultant
focused on business process management software. He provides
training on process modeling with BPMN through
BPMessentials.com, the BPM Institute, and Gartner conferences,
and is the author of The BPMS Report series of product
evaluations available from the BPM Institute.

In the first two installments of this series, we saw why BPMN is important to the Business
Process Expert and got an overview of the notation. In this part, we’ll look beyond the spec
to suggest some best practices for making your BPMN models most effective.

The art of effective process modeling depends on what you are trying to do. Unlike
traditional notations, which presuppose a particular methodology, BPMN is methodology-
neutral, and can be used for multiple purposes. The first, which I call Level 1, is simply
qualitative description, a diagram of the as-is (or proposed to-be) business process that
stakeholders can gather around, discuss, and improve. Level 1 models may ignore
exceptions and show only the “happy path,” and may not include every step, just those
significant for discussion and qualitative analysis.

The second, which I call Level 2, describes all the activities and flows in the process,
including exceptions, and pays particular attention to their sequential and concurrent
relationships. The goal of Level 2 modeling is a complete business-intelligible description of
the process sufficient for quantitative analysis. Level 2 models contain all the detail required
for accurate simulation, but are not by themselves executable. Level 2 modeling is still a
business – or BPX – function. It does not require technical knowledge of the
implementation of each activity, essentially just the activity’s name, performer, and possible
exceptions. The rules embodied in the BPMN spec mostly apply to modeling at Level 2.

Level 3 modeling refers to using BPMN in executable process design, typically in a BPM
Suite. It is similar to Level 2 modeling, but most tools that leverage BPMN as part of their
executable design environment diverge here and there from the spec, since not everything
that can be drawn in BPMN may be executable on the BPMS’s process engine, and even

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 2

when the engine can implement the BPMN semantics, the executable design may not
describe it in accordance with BPMN. Thus BPMN at Level 3 is, today at least, vendor-
specific in its details.

So in this article, when I talk about the art of effective process modeling, I really mean at
Level 2.

Here are nine best practices to get you going.

1. Make the important information visible in the diagram. Label
everything.
BPMN is primarily a diagramming notation, but it also provides attributes for each diagram
element. Many of these attributes are not displayed in the diagram itself, but are really
placeholders for detail needed for technical implementation or simulation analysis. Even if
modeling at Level 2 or 3, all of the important features of the process should be described, at
least qualitatively, in the diagram itself. Shared understanding is always goal number one,
and typically that comes from stakeholders gathered around a table looking at a printed
version of the diagram. They are not accessing the diagram through a modeling tool, which
shows the attributes in property sheets, and they are not reading through 200 pages of
documentation generated by the modeling tool. They are looking at a printed diagram, so if
a key bit of detail is not shown there, it may as well not be in the model.

As a practical matter, this rule translates to “label everything” – not just activities but
subprocesses, gateways, events, and sequence flows. All of these have a Name attribute that
corresponds to the object’s label in the diagram. The BPMN spec never requires these
objects to have labels, but does require, for instance, population of non-diagram attributes
like gateway conditional expressions, message references, and error codes. Whether you
choose to comply with those spec requirements or not, best practice is to create labels for
gateway outputs that suggest, in business-intelligible terms, the meaning of each path.
Unlike non-printing attributes, labels clarify in the diagram the meaning of a message event,
the timeout of a timer event, or the source of an error.

2. Make your diagrams valid. BPMN has rules; learn to follow them.
A process modeling tool is not the same as a drawing tool. You can download free BPMN
stencils for Visio, but they don’t bring with them the underlying semantics and rules of
BPMN, so you can create invalid diagrams and never know it. A true modeling tool has a
function called Validate, and if your diagram contains spec violations it will list them for
you. Sure, a few of the rules in the spec may be arbitrary or even misguided – such as
requiring non-printing attributes but not labels, as discussed above – but most of them
merely enforce the semantic precision that is the key to linking business-intelligible
diagrams to executable implementation. A model is not a doodle. It has rules, so follow
them.

3. Make your diagrams hierarchical, using subprocesses.
This is admittedly a personal bias, to which some others do not subscribe. When the as-is
process is first captured by putting stickies on the wall, what you have is a “flat” process
model, with all the detail at one process level. Of course, you can’t take it in all at once, but
instead have to walk around the room looking at one fragment at a time. Some people build
their BPMN models this way, too, but it seems counter to the whole notion of BPM as a
management discipline, which advocates looking at processes end-to-end. In traditionally

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 3

stovepiped organizations, BPM is a reaction to the problem of not seeing the forest for the
trees, and flat BPMN models that do not provide an end-to-end view are not a good answer.

Instead, you should be able to model the end-to-end process on one page using coarse-
grained-subprocesses, and drill down into each subprocess on a separate page of the
diagram. Because it can render a subprocess either as a collapsed activity shape or expanded
into its detailed flow – and repeat that drilldown as many levels as necessary – BPMN
allows process description at multiple levels of detail, accessed by zooming in and out in the
tool, without losing the integrity of a single end-to-end process model.

4. Use tasks to represent work. Label them VERB-NOUN.
In BPMN, a task represents work done in the process, an action. It is not a function, not a
state, and not a handoff to other participants in the same process. The state of a task (started
or completed) and the sequential flow of work are implicit in the notation itself; you don’t
need to add tasks for them. In fact, it is incorrect to do so. Nevertheless, from beginners in
BPMN you may see task sequences like this:

Budget review Wait for budget
document

Budget document
received

Review budget
document

Budget review
completed

Send to manager
review

Instead, the correct sequence should be this:

Review budget
document

,

or if the budget document is received from outside the process instead of from a prior step,
maybe this:

Review budget
document

Receive budget
document

In BPMN, a message event (or, equivalent, a Receive task) inherently means wait for the
event and then continue. A User task is inherently enabled to start when its incoming
sequence flow reaches it, and the sequence flow out of it means that the task is completed.
So diagrams should not insert tasks to signify those states, since they are implicit in the
notion of sequence flow itself.

5. Reserve the verbs Send and Receive in task names (labels) for
activities that either send a message or wait for (receive) a message.
In BPMN, a “message” simply means a signal to or from an entity outside the process. The
signal does not have to be a SOAP or JMS message. It could be a fax or a phone call. What
is significant is that the fact that the signal means communication with an external entity.
That entity could be the requester of the service that the process represents, such as a
customer placing an order. Or it could represent an external service invoked by the process.

Information passed by a task to another task downstream is not sending a message. In fact,
the sequence flow by itself delivers process information to the task, so the upstream task
doesn’t have to “send” anything.

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 4

BPMN defines special task types called Send and Receive used for inter-process
communications. A Send task is the same as a “throwing” message event. Typically, it is
not performed by a user but is assumed to be an automated activity that sends the message as
soon as the sequence flow into it arrives. A Receive task is the same as a “catching”
message event. It too is not performed by a user but is assumed to represent an event
listener that pauses the flow until the event arrives, and then continues.

6. Use gateways to represent pure routing logic.
Gateways do not perform work. They are not assigned to a resource such as a person or
engine. They do not make decisions, but control the flow following a decision. However, it
is not uncommon to see things like this:

Receive order
Validate order

A

B

Invalid

OK

This is incorrect. Validating the order, whether performed by a person or a business rule
engine, is work, and it requires a task in BPMN. A gateway following the decision task can
then route the instance this way or that depending on the result.

Receive order
OK?

A

B

no

yesValidate order

Also, sometimes you see complex decision logic, such as that used to validate an order,
represented as a network of gateways in which each gateway represents a single rule in the
decision. This is allowed in BPMN, but in general is not best practice, for several reasons.
One, it is inherently procedural, whereas in the real decision the rules are often declarative.
Two, it embeds the internal decision logic in the process, where it is best practice to
externalize business rules so they can be maintained independently of process, particularly
when the rules represent policies that cross process boundaries. And three, it makes the
diagrams unnecessarily complex. Just use a single task to represent the decision, and follow
it with a gateway to route the subsequent workflow.

7. Avoid multiple start events.
The BPMN spec allows multiple start events in a process or subprocess, but recommends
they be “used sparingly and that the modeler be aware that other readers of the Diagram may
have difficulty understanding the intent of the Diagram.” I’ll go further and say, “just don’t
do it,” since the semantics are, more often than not, inherently ambiguous.

In the one case where the semantics are unambiguous, a single start event can be used to
signify the same thing. You could see something like this in a process or subprocess:

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 5

A B

C

Multiple None start events (no trigger symbol inside) means trigger all of the start events
when the process is instantiated. But that’s the same thing as a single None start with
multiple sequence flows out of it, signifying parallel paths from the start.

A B

C

Thus the multiple start events are not incorrect, just superfluous.

Now what does this diagram mean?

Call center

A B

C
Web

Usually the modeler’s intent is that the process can be triggered one of two ways, such as
through the call center or through the web. Some initial processing might be channel-
dependent, but all channels merge to a common downstream process. But is this the correct
way to draw it?

The BPMN spec says each start event is an independent event and generates a process
instance. Thus you could argue that if the second event occurs after the first one, it
generates a separate instance of the process, so the diagram above would be correct. But the
spec also says that if a process requires two independent events to occur in order to start, you
model this with two start events that flow to a common activity with a special merge
attribute set. So in some cases, multiple start events mean the same instance and in other
cases they mean different instances. That’s bad spec-writing.

Fortunately, BPMN 1.1 provides a less ambiguous solution to our modeler’s use case: an
event gateway used to “bootstrap” the process. (In BPMN 1.0, an event gateway could only
be used in the middle of a process, not to instantiate it.)

A B

C

Call center

Web

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 6

The event gateway means wait for one of the following events – typically message events –
and take the sequence flow from the first one to occur. If another of the listed events occurs
later, it triggers a new process instance… unambiguously.

Thus there is no good reason to ever use multiple start events.

8. Use multiple end events to classify end states.
This might seem inconsistent with the previous recommendation, but it’s really not. An end
event does not by itself end a process or subprocess. If the process or subprocess contains
parallel paths, all of them must reach an end event in order for it to complete. Thus there is
an implicit AND-join of all end events in a process or subprocess.

Even if there are no parallel paths, it is quite common to draw separate end events for each
alternative path. On the other hand, you can draw sequence flows from each path in the
diagram to a single end event, and there is nothing wrong with that, either. But it often
clarifies the diagram to simply draw end events representing each possible end state of a
process or subprocess, such as success or failure, and labeled accordingly. In a subprocess,
particularly, where a gateway following the subprocess governs subsequent processing of
the end-to-end process, this helps make the meaning of the diagram understood by all.

Approve

Notify invalid

Success

OK?

Approved?

yes

no

Validate

Fail

Notify not
approvedno

Fulfill

yes

Notify error

9. Use subprocesses to scope events.
This best practice will make more sense after the next article in this series, but it’s so
valuable it’s worth repeating: An attached intermediate event – timer, message, error…
whatever – can only be detected by the process when the activity it is attached to is active.
If the event occurs before the activity starts, or after it ends, BPMN says ignore it. If the
event occurs while the activity is running, the BPMN says abort the activity and continue
down the sequence flow out of the event, called the exception flow.

The activity doesn’t have to be a task. It can be a subprocess. In fact, it can be a subprocess
created solely for the purpose of defining the fragment of the process where a particular
event should result in a particular exception flow.

Here’s an example. Suppose you have an order handling process with steps A to Z and you
want to indicate that between steps B and D the customer can change or cancel the order
with no penalty, and between steps E and G a change or cancellation has a penalty, and after
that any change or cancellation requires a completely new process. In BPMN this is easy to
model. You simply enclose the sequence from B to D in a subprocess and attach a message
event (external signal) to it with a no-penalty exception flow. You also enclose the sequence
from E to G in another subprocess and attach a message event to it with a penalty exception

BPMN – The Art of Process Modeling

© Bruce Silver Associates 2007 7

flow. That’s it! Don’t tell me, as traditional BPA tool vendors often do, that BPMN events
are too complicated for the Business Process Expert.

A B C D

Customer change
or cancel No penalty

handler

For attached timer event, the activity that is attached to has additional significance. An
attached timer event is typically used to specify deadline-triggered processing. Usually the
deadline is specified not as a specific date/time but as a time interval after the activity starts.
So it’s the activity that determines when the clock starts and when it gets shut off. If in a
process with steps A to Z you want to trigger some exception flow if step C is not completed
within 2 hours after the process (i.e., step A) starts, you can simply enclose A through C in a
subprocess and attach a timer event to it.

Creating effective BPMN diagrams sometimes requires going beyond the spec. Learning
how to harness the expressiveness of the notation is critical to shared understanding and
business-IT alignment.

Bruce Silver

