10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter 6. Introduction to XPath

We introduced XML and showed how it made possible the three best-known SOA standards: WSDL, SOAP, and UDDI.
We'd like to progress now to Business Process Execution Language (BPEL), which is used to create services that
orchestrate real-world business processes.

We can describe how each service (called a BPEL process) accepts messages from Web services A and B and sends
related messages to Web services X and Y. But first we need to review how the BPEL process queries a message to
retrieve specific data and how it calculates and compares values, which may be derived from the queried data.

If we're to do more than transfer data from here to there, we need a lower-level language; by default, BPEL 2.0 relies
on XPath 1.0.

In addition to its use in BPEL, XPath (which stands for XML Path Language) is used in Service Component
Architecture (SCA) and Service Data Objects (SDO), to isolate specific values. XPath is also central to XQuery 2.0,
which we expect will become a widely used technology for accessing business data. Moreover, XPath plays a key role
in XML Stylesheet Language Transformations (XSLT), a language for reorganizing data to accommodate the input
requirements of different services, to handle calculations and comparisons more easily, and to allow use of a single
XML source from which you derive a variety of outputs.

This chapter describes the first version of XPath and may be sufficient for your work in the language. If you're
working with XPath 2.0, you'll need details that are available elsewhere — for example, in Michael Kay's work, XPath
2.0 Programmer's Reference (Wrox Press, 2004). Unless otherwise stated, our comments apply in either case.

XPath is a language for addressing (that is, accessing) the values in XML source, which is either an XML document or
a variable based on XML. The language is also used for creating numeric, string, and Boolean expressions. Those
expressions can include XML-stored values, as well as literals, operands, function calls, and other XPath expressions.

The defining aspect of XPath is the location path, which is the syntax for addressing XML-based values. To get you
started with that syntax, this chapter offers examples and informal descriptions. Language specifications are at the
following W3C sites: http://www.w3.0rg/TR/xpath (for XPath 1.0) and http://www.w3.0rg/TR/xpath20 (for XPath
2.0).

Our explanations don't assume that you're trying our examples or creating your own, but if you wish to gain practical
experience, you can set up a Windows 2000/NT/XP environment as described in Appendix B. An alternative for Java
programmers is to use the Java APl for XML Processing (JAXP), as noted in the following article: http://www-
128.ibm.com/developerworks/library/x-javaxpathapi.html.

Nodes

The XPath processor reads the XML source and includes the information in a series of data structures called nodes,
which include only the information necessary for data access. An XPath node doesn't provide detail, for example, on
whether an attribute value was embedded in single or double quotation marks.

Seven different kinds of nodes are related to one another in a tree structure that is specific to XPath. The purpose of
four of the seven nodes is straightforward. Each element, attribute, comment, and processing-instruction node has
information that was derived from a corresponding aspect of the XML source. Each text node has information on the
text value of an XML element. Each namespace node has information on the namespaces that are in scope for a given
element. Last, the single root node (what XPath 2.0 calls the document node) has information on the entire XML
document.

In the tree structure built from the following example, the children of the root node are, in order, a comment node,
an element node, and another comment node.

<?xml version="1.0" encoding="1S0-8859-1"7>
<!— here is an insured —>
<Insured></Insured>

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06

<l— end of file —>

The root node is not the same as the root element, which is the ancestor of all other elements in the XML source. The
root node is more inclusive; it is the ancestor of the element node that was derived from the root element.

Listing 6.1. Sample XML document

<?xml version="1.0" encoding=""1S0-8859-1"7?>
<I-- CarPolicy applicant -->
<Insured CustomerID="5">
<CarPolicy PolicyType="Auto">
<Vehicle Category="'Sedan'>
<Make>Honda</Make>
<Model>Accord</Model>
</Vehicle>
<Vehicle Category="Sport" Domestic="True">
<Make>Ford</Make>
<Mode I>Mustang</Model>
</Vehicle>
</CarPolicy>
<CarPolicy PolicyType="Antique'>
<Vehicle Category="'Sport'>
<Make>Triumph</Make>
<Model>Spitfire</Model>
</Vehicle>
<Vehicle Category="Coupe' Domestic="True">
<Make>Buick</Make>
<Mode I>Skylark</Model>
</Vehicle>
<Vehicle Category="'Sport'>
<Make>Porsche</Make>
<Model>Speedster</Model>
</Vehicle>
</CarPolicy>
</Insured>

The XPath nodes have no details on the XML declaration. They also lack details on a DOCTYPE declaration, which is
present when a validation mechanism called a Document Type Definition (DTD) is in use.

You can access specific data by referencing the nodes in a sequence that leads from the root node to the nodes of
interest. Every node has a string value, so you gain access to a unit of business data as soon as you reference (in
particular) an element or attribute node. Consider, for example, the XML document shown in Listing 6.1.

Here's a kind of XPath expression (called a location path) for accessing the make of the vehicles whose Category
value is Coupe.

/1Insured/CarPolicy/Vehicle[@Category="Coupe"]/Make

As we describe this expression in the following paragraphs, we refer to nodes by a type name, as when we say
Vehicle node.

The initial virgule (/) in the expression indicates that the search for data starts at the root node. The set of
characters between one virgule and the next represents a location step. Each location step selects nodes based on
criteria that you specify.

The first step (Insured) brings the search to the node that is subordinate to the root node and has details on the
root element. The Insured node refers to a single element, but the general rule is important: location steps provide
access to a node set, which is a group of nodes that (with exceptions) are arranged in XML-source order (an order
that reflects the sequence of content in the XML source) or is an empty set. An empty set is the outcome when no
node conforms to the selection criteria.

2 of 3

30f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06

We will have more to say about ordering in due time.

In general terms, a location path is an XPath expression that resolves to a node set. An absolute location path is one
that starts at the root node, and a relative location path is one that starts in the middle of a node tree.

The second step in our sample expression (CarPolicy) brings us to a node set that has multiple members —
specifically, a set of all CarPolicy nodes that are children of the Insured node.

The third step (Vehicle[@Category="Coupe™]) continues the path, referencing all Vehicle nodes that are children of
any CarPolicy node that is itself a child of the Insured node. The brackets ([]) and the syntax internal to them is a
predicate, which contains a Boolean expression or (as shown later) an abbreviation that is expanded to a Boolean
expression. The XPath processor selects only the nodes for which the expression evaluates to true.

In this case, the location step means "access all the Vehicle nodes, with the further restriction that the string value
of the Category attribute node is Coupe." When you refer to an attribute node in a predicate, you precede the name
with the "at sign" (@), as shown.

Here's another predicate, outside our example.

[@Exterior="white" and @Interior="red"]

You might read this as, ". . . with the further restriction that the exterior is white and the interior is red."

Continuing with our main example, the fourth step (Make) completes the path, referencing the Make node for the
Vehicle nodes whose Category attribute value is Coupe. In this case, the overall expression resolves to an element
node whose string value is Buick.

XPath cannot create nodes or add detail to an XML source. You can use XPath in the context of XSLT, however, to
create output that is based on, first, an XML source and, second, a set of directions (including XPath expressions)
that are supplied in an XML stylesheet. If you use the instructions in Appendix B to try out XPath expressions, you'll
be creating an output with XSLT.

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Avoiding Errors
We interrupt this description of a language to give you some practical pointers on avoiding errors.

First, if you work with the environment described in Appendix B, you'll find that the XPath expression causes an error
if the syntax is incorrect but does not cause an error if names or values are not in the XML under review. (You receive
no error message, for example, if you type Category instead of @Category.) That lack of errors doesn't extend to
every other product that incorporates XPath, however. When you work in BPEL, you'll find that an empty set itself
may cause an error if you copy an empty set to a variable.

Second, when you work with XPath in an XML file rather than through a user interface, consider the following points:

e Delimit a string with single quotes (or the characters ') if the string is in an expression that is delimited
by double quotes. Similarly, delimit a string with double quotes (or the characters ") if the string is in
an expression that is delimited by single quotes. Use of the same kind of quotation marks for the string and
the expression ends the expression prematurely.

e To express comparison operators that include angle brackets, use the following characters:
o > for greater than (>)
o < for less than (<)
o >= for greater than or equal to (>=)
o <= for less than or equal to (<=)
e Use & if you wish to type an ampersand (&).
Last, when you're working on a real-world problem, try to recall a namespace-related issue that we now describe.

If an XML element is in the default namespace, you cannot access the element node by name unless the XPath
expression uses a prefix when referring to that name. In the following XML source, for example, CarPolicy is in
namespace defaultNamespace.

<other:Insured xImns="defaultNamespace"
xmIns:other="otherNamespace'>
<CarPolicy type="Antique"/>
</other:Insured>

The next XPath expression, however, resolves to an empty set because CarPolicy is not being addressed correctly.

/other:Insured/CarPolicy

To access the CarPolicy node, you can use syntax (as shown later) for accessing a node without referencing a node

name at all. The solution that applies more often, however, is to ensure that the XPath expression has access to and
uses the appropriate namespace.

To demonstrate the solution, we need to show the XPath expression in its native habitat, inside an XML file. Assume,

2 of 2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

for example, that the XPath expression resides in the from element of a BPEL process, as shown next.

<from xmlns:abcde="defaultNamespace™
xmIns:other="otherNamespace'>

$myVariable/other: Insured/abcde:CarPolicy
</from>

The BPEL variable ($myVariable) that begins the XPath expression contains XML-based data such as a transmitted
message. In this case, the specific variable contains the other: Insured node that we just described. The location
path that follows the variable identifies how to access the data inside that variable.

Do you see what we've done? The XML element that contains the XPath expression has the information necessary to
ensure that the XPath expression works. Specifically, the XPath expression has access to a prefix (abcde) that in turn
refers to the namespace URI called defaultNamespace. The namespace problem is fully solved because CarPolicy is
being addressed with a prefix that refers to defaul tNamespace.

10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Context

Let's return to the language itself.

The XPath processor evaluates a location path one step at a time, and each node that is selected during a given step
provides a context, which is information that limits which nodes are available in the next step.

As suggested in Figure 6.1, if we descend the node tree /Insured/CarPolicy/Vehicle one generation at a time
e a single Insured node provides a context that limits us to selecting (at most) the two CarPolicy nodes

e the first of the CarPolicy nodes provides a context that limits us to selecting (at most) the first two Vehicle
nodes

e the second CarPolicy node provides a context that limits us to selecting (at most) the last three Vehicle
nodes

Figure 6.1. Context

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Insured

CustomeriD =5
CarPolicy

PolicyType = Auto
Vehicle |
Category = Sedan

Vehicle |
Category = Sport

CarPolicy

PolicyType = Antique
Vehicle l

Category = Sport

5 Vehicle |
Category = Coupe

Vehicle |

Category = Sport

The node that provides a context at a given time is called the context node.

Perhaps the best way to understand a location path is to consider the location-path characters that act as operators.
As we saw earlier, if an expression begins with a virgule, the search starts at the root node. The essential point,
however, is that if the virgule is placed between one location step and the next (in CarPolicy/Vehicle, for
example), the XPath processor selects in turn each node (in this case, each CarPolicy node) that was retained by
the location step at the left of the virgule. The node selected at a given time is the context node. The processor then
uses that node when evaluating the location step at the right of the virgule. The virgule completes its operation only
when, for each context node, the XPath processor evaluates the right-side location step.

Similarly, the presence of a predicate (in Vehicle[@Category="Coupe"], for example) causes the XPath processor to
select in turn each node (in this case, each Vehicle node) that was retained by the syntax that immediately
precedes the predicate in the same location step. The selected node is the context node. The processor retains that
node only if the predicate evaluates to true. The predicate completes its operation only when, for each context node,
the XPath processor evaluates the predicate.

2 of 3

30f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

In both cases, the node used "in turn" is the context node.

Our definition of context node is the one you need as you explore location paths, but be aware that we're using a
subset of the W3C definition, which states that the context node is the node being processed at a given time. The
W3C definition and the explanations required to make it meaningful are geared to developers of XPath processors.

The word "context" is included in additional terms. In some cases, context position reflects the position of the
context node in the sequence of possible context nodes. That position ranges from 1 to the context size, which is the
number of nodes in the set of nodes that are each used (in turn) as a context node. In a broader sense, context
position reflects the position of a node in a node set, and context size is the number of nodes in that set. We'll show
the different uses of these terms as appropriate.

You can use a positional predicate, which is a predicate that restricts the addressed nodes based on the context
position. For example, the following expression restricts the selection to the second Vehicle child within each
CarPolicy node.

/Insured/CarPolicy/Vehicle[position()=2]

Those nodes represent Ford Mustang and Buick Skylark. As described later, however, the only string value that is
displayed (if you're trying out these examples) is Ford Mustang.

If the comparison operator is an equal sign (=), an abbreviated form of a positional predicate is valid. The last

expression can be stated as follows.

/1Insured/CarPolicy/Vehicle[2]

Other operators are valid, too, as listed later. You can select the nodes at any position greater than 1, for example.

/Insured/CarPolicy/Vehicle[position()> 1]

Here, the returned nodes represent Ford Mustang, Buick Skylark, and Porsche Speedster. However, only Ford
Mustang is displayed as a string value.

You can verify the number of returned nodes by using the XPath function count, which takes a node set as its only
argument. The next example returns the value 3.

count(/Insured/CarPolicy/Vehicle[position()> 1])

10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Examples

We have more to tell before we present "Location Steps in Summary," a later section that concisely explains what
location steps do. For now, let's look at some more examples.

e As mentioned, /Insured/CarPolicy/Vehicle makes available all Vehicle nodes that are children of any
CarPolicy child within Insured. The following expression resolves to the node whose string value is Buick.

/Insured/CarPolicy/Vehicle[@Category="Coupe"]/Make

e In contrast, /Insured/CarPolicy[1]/Vehicle is more restrictive, making available all Vehicle nodes that are
children of the first CarPolicy child within Insured. The following expression resolves to an empty set.

/Insured/CarPolicy[1]/Vehicle[@Category="Coupe"]/Make

e /Insured/CarPolicy[last()] selects (within Insured) the last CarPolicy node, which is the node whose
PolicyType attribute has the string value Antique.

e /lInsured/CarPolicy[last()]/Vehicle[last()] selects the third Vehicle node within the second CarPolicy
node. That Vehicle node has details on the Porsche Speedster.

Let's talk about the returned nodes whose string values are not available to you. The following expression resolves to
a set of two Make nodes (one for Ford, one for Buick).

/Insured/CarPolicy/Vehicle[2]/Make

Only the first Make node seems to be available. The reason is that most XPath processors (such as the ones used with
BPEL) provide the string value only of the first returned node.

The following expression returns an empty set.

/Insured/CarPolicy/Vehicle[2]/Make[2]

The set is empty because each of the two Vehicle nodes selected by /Insured/CarPolicy/Vehicle[2] has only one
Make child, and the predicate [2] refers not to the whole expression but to the Make node.

How do you access only the Make node that refers to Buick? The solution is to use parentheses, which selects a node
set that can be filtered by a predicate. In the next example, the XPath processor makes available only the second
node in the node set.

2 of 3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

(/Insured/CarPolicy/Vehicle[2]/Make)[2]

Incidentally, a parenthetical expression is valid only at the beginning of a location path in XPath 1.0. The next
expression is valid only if you're working with XPath 2.0.

<I- not a valid expression with XPath 1.0 —>
/Insured/CarPolicy/(Vehicle)

Now, let's look again at the effect of the last() function. The following expression returns, for each CarPolicy node,
the Make child of the second Vehicle element:

/Insured/CarPolicy/Vehicle[2]/Make[last()]

The value of last() is 1, and although the XPath processor returns two nodes (one for Ford, one for Buick), the only
returned string value is Ford.

The following expression returns the last Make node of the nodes returned from the parenthesized expression:

(/Insured/CarPolicy/Vehicle[2]/Make) [last()]

The value of last() is 2, and the related string value is Buick.

A predicate operates in the context of the previous location steps and the syntax that precedes the predicate in the
same location step. Therefore . . . what is the result of the next expression?

/Insured/CarPolicy/Vehicle[@Category="Sport~][2]/Make

This expression evaluates to a single node whose string value is Porsche. The reason is that the predicate [2] is
operating on each node set that is created by the syntax Vehicle[@Category="Sport"]:

e Subordinate to the first CarPolicy node is a node set that contains all Vehicle nodes whose Category
attribute equals Sport. One node is present, and its Make child has the string value Ford. When applied to this
set, the predicate [2] yields an empty set.

e Subordinate to the second CarPolicy node is a node set that also contains all Vehicle nodes whose Category
attribute equals Sport. Two nodes are present, and their Make children have the respective string values
Triumph and Porsche. When applied to this set, the predicate [2] yields the second node.

Here's a variation:

/Insured/CarPolicy/Vehicle[@Category="Sport™][last()]/Make

Each of the branches mentioned earlier now contributes one node that is returned by last(). The overall expression
yields a node set whose string values are Ford and Porsche, though only the string Ford is immediately available.

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Order counts, even within a location step. The next example returns the Make node for the second Vehicle child
within each CarPolicy node, with the further restriction that the value of attribute Category is Sport:

/Insured/CarPolicy/Vehicle[2][@Category="Sport~]/Make

The string value of the single returned node is Ford.

30f3

10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Parts of a Location Step

A location step includes, at most, three kinds of details: an axis specification, a node test, and predicates.

An axis specification includes a range of nodes for subsequent consideration. The most common axis specification is
child, whose use means that the location step accesses children of the context. Our examples used the child
specification, but child is the default and so was not required in our syntax. If you assign an axis specification
explicitly, you must follow it with two colons (for example, child::).

By varying the axis specification

e you can indicate how to select nodes in a given location step; for example, you can include all descendant
nodes rather than stepping down the tree one generation at a time

e you can indicate in which direction to seek nodes for selection; for example, you can include nodes that are
siblings rather than children or descendants

A node test is a criterion to compare against each of the nodes included in an axis specification. That test is either a
node name to be matched (as in our prior examples) or a preset value.

Predicates are optional and further restrict the set of nodes that are selected.

AXis Specifications

This section lists the thirteen axis specifications. As you read through the list, note the following distinction. The
forward axes are the axis specifications that assign context-position numbers to nodes in XML-source order. The
reverse axes are the axis specifications that assign context-position numbers to nodes in reverse XML-source order.
The XML processor always returns nodes in XML-source order, regardless of whether you use a forward or reverse
axis. Only the context-position number that is assigned to each node is affected by the axis direction, as we'll show
later.

The axis specifications are as follows:

e ancestor is a reverse axis that includes the parent of the context node, the parent of the parents, and so on,
up the tree.

e ancestor-or-self is a reverse axis that includes the context node from the previous location step, along with
(as you'd guess) the parent of the context node, the parent of the parents, and so on, up the tree.

e attribute is described later.
e child is a forward axis that includes the children of the context node and is the default axis specification.

e descendant is a forward axis that includes the children of the context node, the children of those children, and
so on, down the tree.

e descendant-or-self is a forward axis that includes the context node from the previous location step, along
with (right!) the children of the context node, the children of the children, and so on, down the tree.

e following is a forward axis that includes all nodes subsequent to the context node, including subsequent
siblings but excluding children and other descendants.

e following-sibling is a forward axis that includes all the next siblings (the first through the last) of the
context node.

e namespace is described later.

e parent is a reverse axis that includes the parent of the context node; however, the context position is 1 at

2 of 3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

most.

e preceding is a reverse axis and includes all prior nodes, including prior siblings and text nodes, but excluding
parents and other ancestors.

e preceding-sibling is a reverse axis and includes all previous siblings (the first through the last) of the
context node.

e self includes the context node. The axis is considered forward, but the context position is 1 at most.

In general, you can restrict the selection of nodes by using attribute values in predicates. Only two axis
specifications, however, actually include attribute nodes or (what is similar) namespace nodes.

The attribute axis specification includes attribute nodes. This specification selects nodes only if the context node is
an element node. In the XPath model:

e The parent of an attribute node is an element node and is accessible through the parent or ancestor axis
specification. The converse relationship is not true, however: an attribute node is not a child of an element
node. You can access an attribute node in two ways: by the attribute axis specification when the context node
is an element, and by the self axis specification when the context node is an attribute.

e A namespace URI in a declaration such as xmlns = "www.ibm.com® or xmIns:tns = "www.ibm.com" is available
through the namespace axis specification but not through the attribute axis specification.

e The order of attribute nodes within an element node can vary from one XPath processor to another. (In
general in XML, attributes are unordered.)

The namespace axis specification includes namespace nodes. In XPath 2.0, this rarely used specification is deprecated
(is made a target for future removal from the language). Therefore, you may want to skim or skip the next
paragraph.

The namespace specification selects nodes only if the context node is an element node. The string value of a
namespace node is a namespace URI. In the XPath model:

e Each element node includes a namespace node that represents the XML system namespace. (The XML system
namespace allows use of attributes such as xml: lang, which identifies a human language.) The string value of

the namespace node is http://www.w3.org/XML/1998/namespace.

e Each element node also includes a node for each namespace that is in scope for the XML element. Consider
the following XML document:

<?xml version="1.0" encoding="1S0-8859-1"?>
<other:Insured xImns="defaultNamespace"
xmIns:other="otherNamespace' >

<CarPolicy/>
</other:Insured>

The related CarPolicy node includes namespace nodes whose string values are defaultNamespace and
otherNamespace.

e The parent of a namespace node is an element node. The converse relationship is not in effect, however: a
namespace node is not a child of an element node. You can access a namespace node in two ways: by the
namespace axis specification when the context node is an element, and by the self axis specification when the
context node is a namespace node.

e The order of namespace nodes within an element node can vary from one XPath processor to another.
You can categorize axis specifications in a different way:

e Six axis specifications provide access vertically, up and down the node tree: ancestor, ancestor-or-self,
child, descendant, descendant-or-self, and parent. In relation to BPEL, you'll primarily use child and, on
occasion, descendant.

e Six axis specifications provide access horizontally, across the node tree: attribute, following, following-
sibling, namespace, preceding, and preceding-sibling. In relation to BPEL, you'll probably use only
attribute and on occasion, following and following-sibling.

The attribute and namespace specifications do not concern the relationship of one element node to another

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

but let you access nodes derived from details that are internal to an XML element.
e The selT specification stands alone and is used on occasion in BPEL.
Node Tests

As mentioned, a node test is a criterion to compare against each of the nodes included in an axis specification.
Several preset node tests are available:

o *

e comment()

text()

node()

e processing-instruction()

30f3

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

*

The asterisk (*) node test retains all the element nodes and no others in a given axis specification, except in two
instances. In the case of the attribute specification, the asterisk retains all the attribute nodes and no others. In
the case of the namespace specification, the asterisk retains all the namespace nodes and no others.

The asterisk provides a way to include a node without referencing a name. In relation to our main example, the
following expression accesses the second CarPolicy node.

/Insured/*[2]

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

2 of 2

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

comment()

The comment() node test retains comment nodes, which are children and siblings of element nodes or are children of
the root node. Consider the following XML document.

<?xml version="1.0" encoding="1S0-8859-1"7?>
<I- here is an Insured —>
<Insured><CarPolicy><I- Cancelled —></CarPolicy></Insured>

The next expression resolves to the contents of the second comment, including the space that precedes and follows
the word Cancelled.

/descendant: :comment() [2]

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

2 of 2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

text()

The text() node test retains text nodes, which are children and siblings of element nodes or are children of the root
node. In relation to our main example, the following expression returns a single text node, and the string value is
Buick.

/Insured/CarPolicy/Vehicle[@Category = "Coupe”]/Make/text()

If you wish to access multiple text nodes for subsequent string processing, you can select an element node that has
descendant element nodes. For example, assume that the Material element includes no line break in the next XML
document.

<?xml version="1.0" encoding=""1S0-8859-1"?>

<Material>Leather<Product>Bucket Seats</Product>
<Quantity>20</Quantity></Material>

The XPath expression /Material provides the following string value, which represents the content of the three text
nodes that are descendants of the Material node.

LeatherBucket Seats20

Also, the string value of the root node (which is expressed by a virgule) resolves to the same text nodes as does the
root element node (which is subordinate). Either of the following expressions resolves to the string Bucket Seats.

/descendant: :text()[2]
/Material/descendant: :text()[2]

Last, you may become perplexed about the location of text nodes that include or are composed of white space
(carriage return, spaces, tabs). Consider the following Material element, for example.

<Material>Leather
<Product>Bucket Seats</Product>
<Quantity>20</Quantity>
</Material>

Three text nodes are children of that element:

e the string Leather followed by the white space that is between the end of Leather and the left angle bracket of
the Product start-tag

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

e the white space between the right angle bracket that ends the Product element and the left angle bracket of
the Quantity start-tag

e the white space between the right angle bracket that ends the Quantity element and the left angle bracket of
the Material end-tag

You can access any of those text nodes by a positional predicate. Here's a location path that returns white space.

/Material/text()[2]

XPath does not retain any space that precedes the first element node.

2 of 2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

node()

The node() node test retrieves all nodes in a given axis specification:
e In the attribute axis specification, the test retrieves only attribute nodes.
e In the namespace axis specification, the test retrieves only hamespace nodes.

e Otherwise, the test retrieves all nodes in the axis specification.

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

2 of 2

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

processing-instruction()

The processing-instruction() node test retrieves a set of processing-instruction (Pl) nodes, which are children and
siblings of element nodes or are children of the root node. Here's an XML document with a single processing
instruction:

<?xml version="1.0" encoding=""1S0-8859-1"?>
<Material>Leather
<?HandleThis how="somehow" ?>
<Product>Leather Seats</Product>
<Quantity>20</Quantity>
</Material><?HandleThat how="another way' ?>

The next expression returns the contents of the instruction, including the spaces that follow the phrase
how="somehow".

/Material/processing-instruction("HandleThis")

The node test can identify a processing-instruction node by specifying a Pl target, such as HandleThis, but the test is
also valid without specifying a Pl target. The next expression returns two nodes.

count(/descendant: :processing-instruction())

The XML declaration statement (which starts with <?xml) is not a processing instruction and is not available to an
XPath expression.

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

2 of 2

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Predicates

As noted earlier, a predicate restricts the context nodes based on some criterion, as specified in a Boolean
expression. A later section suggests some of the flexibility that is available to you. XPath 1.0 will convert any
expression to a Boolean expression, but that behavior may or may not yield the result you intend. We'll give you a

hint of the issues now.

A predicate can restrict your selection to a context node that has a specified string value. Either of the following,
equivalent location paths, for example, return the second Make node from our main example.

/descendant: :Make[self: :node()="Ford"]
/descendant: :Make[-="Ford"]

However, if you use a string where a Boolean is expected, the value of the expression is always true. Any of the
following location paths selects all five Make nodes.

/1Insured/descendant: :Make["Ford™]
/Insured/descendant: :Make["false"]
/Insured/descendant: :Make["true™]

In each case, the string value of the first returned node is Honda.
You can use an XPath function in a predicate. Let's consider two examples.

The starts-with() function returns true if the second string argument is at the beginning of the first. Each of the
following expressions returns the one Model node whose string value is Skylark.

/descendant: :Model[starts-with(self::node(), "Sky")]
/descendant: :Model[starts-with(., "Sky")]

The contains() function returns true if the second string argument is within the first. Each of the following
expressions also returns the one Model node whose string value is Skylark.

/descendant: :Model[contains(self::node(), "lark®)]
/descendant: :Model [contains(., " lark®)]
/descendant: :Model[contains(.,"Sky")]

Last, you can use a predicate to test for the presence of an attribute or of an immediately subordinate element.
Here's an expression that returns 5, which is the number of Vehicle nodes that are parents of a Make node.

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

count(/descendant: :Vehicle[Make])

The next expression returns 2, which is the number of Vehicle nodes that include the Domestic attribute.

count(/descendant: :Vehicle[@Domestic])

2 of 2

10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and
excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see
17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal
and Massachusetts laws.

Abbreviations
The XPath 1.0 location-path abbreviations are as follows:
® You can omit child::.

® A short form is available for a predicate that contains only a position value with an equal sign. The predicate [2] is a short form of
[position()=2]. No short form is available for a predicate such as [position() < 2], which has an operator other than an equal sign.
Also, if you use a Boolean operator, you must use the long form for the position value. The predicate [position()=1 or position()=5] is
not expressed as [1 or 5], for example.

® The at sign is used in front of an attribute name in a predicate but also functions as a short form of attribute::. In our main example, the
following location path selects the string value 5.

/Insured/@CustomeriD

® The double virgule (/7/) lets you step through many levels of the tree, with the children of the context node potentially included as one of
the selected nodes. The formal definition is /descendant-or-self::node()/.

You can use the double virgule at the beginning of a location path or in the middle. Each of the next expressions includes all Vehicle nodes
that are the first children of their parents.

//Vehicle[1]
/Insured//Vehicle[1]

In our case, each expression makes available the nodes for Honda Accord and Triumph Spitfire, displaying only the string value Honda
Accord.

If your XML source includes hundreds of lines and if you use the double virgule at the start of a location path rather than in the middle, the
processing time may be too long for your purpose.

The following example (not an abbreviation) may seem similar to //Vehicle[1], but selects only the first Vehicle node in the document.

/descendant: :Vehicle[1]

The displayed string value is Honda Accord.

® A single period (.) is a short form for the context node; specifically, the period is a short form of self::node(), as noted earlier.

/descendant: :Make[.="Ford"]

® A double period (..) is a short form of parent::node(), which is the parent of the context node. The following example returns the five
Vehicle nodes, starting with the one for Honda Accord.

/descendant: :Make/ . .

Examples with Descendants and Siblings

Some axis specifications cause behavior that you might not expect. Let's try examples with the descendant specification (which is straightforward)
and with the following-sibling specification (which is less so).

The string value of the next expression refers to the third of the Insured node's Vehicle descendants whose Category value is Sport.

2 of 3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

/Insured/descendant: :Vehicle[@Category="Sport"][3]/Make

The string value is Porsche.

The string value of the following expression also is Porsche, which refers to the fifth Vehicle descendant of the Insured node.

/Insured/descendant: :Vehicle[last()]/Make

The following expression selects two nodes — specifically, the second Vehicle descendant of each CarPolicy node. The displayed string value is
Ford, from the first of the two selected nodes.

/Insured/CarPolicy/descendant: :Vehicle[last()]/Make

We'll now introduce the union (]) operator, which selects nodes based on a prior and subsequent location path. The following expression retrieves
one Vehicle node whose Category attribute value is Sedan and two whose Category attribute is Sport.

/descendant: :CarPolicy[1]/Vehicle[@Category="Sedan"]/Make | /descendant::CarPolicy[2]/Vehicle[@Category="Sport"]/Make

The string value of the first retrieved node is Honda.

When you work with child or descendant elements, the position value [2] is the second child or descendent; but when you work with siblings, the
position value [2] refers to the second sibling (forward or backward, depending on the axis specification). In the following expression, five
Vehicle nodes are used at different times as the context node for the second-to-last location step (following-sibling: :Vehicle), which selects
three unique nodes.

/Insured/CarPolicy/Vehicle/following-sibling: :Vehicle/Make

The string values of the selected Make nodes are as follows:

® Ford is the only string value that is immediately available. That value is present because the expression selected all subsequent siblings of
the first Vehicle child of the first CarPolicy node.

® Buick is available if you use parentheses and the predicate [2], as in previous examples. That value is present because, in relation to the
second CarPolicy node, the expression selected all subsequent siblings of the first Vehicle child.

® Pporsche is available if you use parentheses and the predicate [3]. That value is present because, in relation to the second CarPolicy node,
the expression selected all subsequent siblings of the first and second Vehicle nodes and then removed the duplicate node that has string
value Porsche. XPath 1.0 expressions never provide a duplicate node, although the option to retrieve duplicate nodes is available in XPath
2.0.

The following expression returns only one node because in only one case is a sibling a second sibling, two nodes away from a context node.

/lInsured/CarPolicy/Vehicle/following-sibling::Vehicle[2]

The expression resolves to the string value Porsche Speedster, and the string value of the relevant context node is Triumph Spitfire.

Consider a variation:

/Insured/descendant: :Vehicle/following-sibling::Vehicle[2]

The effect is precisely the same as that of the previous expression. The sibling relationships of the Vehicle nodes are not dependent on the
CarPolicy context node. The node for Ford Mustang is never a sibling of the node for Triumph Spitfire, for example, no matter the location path.

30f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Examples with a Reverse Axis

Let's explore the effect of using a reverse axis. As we said earlier, the meaning of reverse axis is that the context-position numbers are assigned in
reverse XML-source order.

In the following case, the XPath processor returns the first-level ancestor node of each Make node.

/descendant: :Make/ancestor: :*[1]

The XPath processor returns five Vehicle nodes, each of which is the first ancestor of a Make node. The ancestor nodes are returned in XML-source
order, not in reverse order. The string value of the first returned node is Honda Accord.

In the following case, the XPath processor returns the third-level ancestor node of each Make node.

/descendant: :Make/ancestor: :*[3]

The third-level ancestor node of every Make node is the Insured node. The string value is the concatenation of all text nodes in the XML source and
contains the make and model of all five cars.

Last, notice the difference between our first ancestor example and the following one, which includes parentheses.

(/descendant: :Make/ancestor::*)[3]

The parenthetical expression returns eight nodes (five Vehicle nodes, two CarPolicy nodes, and the Insured node). The predicate selects the
third of those nodes in XML source order; in other words, it selects the first Vehicle node, whose string value is Honda Accord.

Location Steps in Summary

Now we can give you a big story in a few words. For a given location step, the XPath processor handles one context node at a time and fulfills four
steps in relation to each context node:

1. Selects all nodes in the axis specification.
2. Retains each node that passes the node test.

3. Assigns a number to each retained node in a way that reflects the XML-source order (for forward axes) or that reflects the opposite
(for reverse axes).

4. Processes each predicate in turn, in a loop that acts as follows:

a. Reviews the Boolean expression.

As described earlier, the predicate can include one or more values to be tested against position() and may
include a value returned from last() . The XPath processor compares the test values against the numbers
assigned in step 3. The value returned from last() is the highest number that was assigned in step 3.

b. Retains all nodes for which the Boolean value in the predicate is true and removes the rest.

c. Reassigns a number to each node, as needed to respond to the removal of nodes during step 4b.

XPath 1.0 always removes duplicate nodes, and XPath (whether 1.0 or 2.0) returns the nodes in XML-source order.

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Other Aspects of XPath 1.0

We've described location paths at length and now sprint through aspects of XPath 1.0 that are more like other
languages. For additional details, refer to descriptions in your product documentation, which should include product-
specific extensions, if any.

Expressions
XPath 1.0 expressions resolve to
e Boolean values that are directly available by invoking the functions true() and false()
e strings
e numbers (double-precision, 64-bit floating point)
e node sets

In relation to Booleans, strings, and numbers, the XPath 1.0 processor automatically converts from one type to
another in accordance with the XPath functions string(), number(), and Boolean():

e When a comparison of one operand to another is based on the equal sign or the not-equal sign (1=), data-type
conversions occur as follows:

o A comparison that includes a Boolean is a Boolean comparison.

o A non-Boolean comparison that includes a number is a numeric comparison.

o A comparison that lacks Booleans and numbers is a string comparison.
e When a comparison of one operand to another uses <=, <, >=, or >, the comparisons are numeric.
e A zero is equivalent to a Boolean false, and any non-zero number is equivalent to a Boolean true.

e A string with any value is equivalent to a Boolean true, and a string with no characters is equivalent to a
Boolean false.

The characters NaN mean not a number and may appear in a situation where you've tried to convert a string
such as Hello! to a number.

In relation to node sets, the following rules are in effect:
e A comparison of two node sets evaluates to true if the string value of any node in the first node set is the

same as a string value of any node in the second. The following example resolves to true because each of the
two node sets includes a node whose string value is Sport:

/descendant: :CarPolicy[1]/Vehicle/@Category =
/descendant: :CarPolicy[2]/Vehicle/@Category

One implication is that an equality comparison of one node to another is a comparison of string values and is
never a comparison to determine whether the nodes are the same.

e A comparison of a node set to a number evaluates to true if the string value of a node in the node set can be
converted to that number, as in the next example.

1of4

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

/Insured/@CustomerlD = 5

e A comparison of a node set to a string evaluates to true if the string value of a node in that node set is
equivalent to the string, as in the next example.

/Insured/@CustomerlD = *5*¢

e A node set evaluates to true in a Boolean comparison if the node set includes at least one node. The following
evaluates to true because the XML source includes at least one Make element whose string value is Porsche

and at least one Model element whose string value is Mustang.

/descendant: :Make[.-="Porsche®] and /descendant::Model[.="Mustang"]

As mentioned earlier, a predicate can accept any Boolean expression. The following expression returns any Vehicle
node whose Make child has the string value Ford and whose Model child has the string value Mustang.

/descendant: :Vehicle[child::Make = "Ford"][child::Model = "Mustang"]
That expression returns the second Vehicle node, as does the next expression, which is the same but omits
references to the child axis specification.

/descendant: :Vehicle[Make = "Ford®"][Model = "Mustang-]

Last, we want to shed light on a confusing aspect of Boolean logic in XPath. Our focus is twofold: the effect of the
not-equal operator when it is used to compare a node set and a string, and the effect of the not() function, which
returns the opposite of the Boolean value that is passed to it.

We offer four examples:

e The first expression evaluates to true if one or more Make nodes has the string value Buick.

/descendant::Make = "Buick"”

e The second expression evaluates to true if no Make node has the string value Buick.

not (/descendant::Make = "Buick"®)

That is, the example evaluates to false if any Make node has the string value Buick.

e The third expression evaluates to true if one or more Make nodes has a string value that is not Buick:

/descendant::Make != "Buick”

2 of 4

30f4

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

That is, the example evaluates to false only if every Make node has the string value Buick.

e The fourth expression evaluates to true only if every Make node has the string value Buick.

not(/descendant: :Make != "Buick"®)

The subtle difference in meaning between the second and third expressions causes a big difference between the first
and fourth.

Consider the first and third expressions again and ask yourself, "What do the following Boolean expressions have in
common?"

/descendant: :Make[position() < 3] =
/descendant: :Make[position() < 3]

/descendant: :Make[position() < 3] !I=
/descendant: :Make[position() < 3]

Both Boolean expressions evaluate to true. The first expression evaluates to true because at least one node in the
first node set has the same string value as at least one node in the second node set. The second expression
evaluates to true because at least one node in the first node set has a string value that is different from the string
value of at least one node in the second node set.

Aren't you glad you asked?

Numeric and Boolean Operators

Table 6.1 lists the numeric and Boolean XPath operators in order of decreasing precedence. The operators in a given
cell are processed in left-to-right order in a given expression.

Table 6.1. XPath numeric and Boolean operators

Operator Meaning

* Multiply

div Divide

mod Use modular arithmetic, where the output is negative only

if the dividend is negative:
e 7 mod 3yields 1
e 7 mod 3yields 1
e -7 mod -3 yields -1

e -7 mod -3 yields -1

+ Plus

- Minus

<= Less than or equal to
< < Less than

>= Greater than or equal to
>> Greater than

= Equal

1= Not equal

and Boolean and

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Operator Meaning
or Boolean or
Functions

The next sections give a brief overview of most XPath 1.0 functions. For further details, see your product

documentation.

4 of 4

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Returns a Boolean

Each function in Table 6.2 returns a Boolean.

Table 6.2. XPath 1.0 functions that return a Boolean value

Function Meaning

contains(string, string) Indicates whether the first argument includes a string equal to the
second argument. Given our main example, each the following
expressions resolves to true because the string lark is within the string
Skylark.

contains("Skylark®, "lark®)
contains(descendant: :Model [4], “lark™)
contains(descendant: :Model [position() >= 4], "lark®)

The first argument in the third expression returns the nodes whose
string values are Skylark and Speedster; however, only the first node
is available, and the only tested string value is Skylark.

The next expression resolves to false because string operations are
case-sensitive.

contains("Skylark, "LARK")

false() Returns false
not(Boolean) Returns the opposite value to the value of the argument.
starts-with (string, string) Indicates whether the first argument starts with a string equal to the

second argument. Given our main example, each the following
expressions resolves to true because the string Sky is at the beginning
of the string Skylark.

starts-with("Skylark®,"Sky")
starts-with(descendant: :Model [4], "Sky™)
starts-with(descendant: :Model [position() >= 4], "Sky")

The first argument in the third expression returns the nodes whose
string values are Skylark and Speedster; however, only the first node
is available, and the only tested string value is Skylark

The next expression resolves to false because string operations are
case-sensitive.

starts-with(*Skylark*®, "SKY*

true() Returns true.

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

2 of 2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Returns a String

Each function in Table 6.3 returns a string.

10f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Table 6.3. XPath 1.0 functions that return a string
Function Meaning

concat(string, string, . . .) Concatenates any number of string arguments. The
following expression resolves to Buick Skylark.

concat("Buick ", "Sky", "lark®)

name(node set) Returns the name of the first node in the node set. Given
our main example, the following expression resolves to
CarPolicy, which is the name of the first retrieved node

name(/Insured/*)

normalize-space(string) Removes leading and trailing spaces and removes all but
one space when multiple white-space characters (carriage
returns, spaces, tabs) are between other characters. The
following expression resolves to Buick Skylark

normalize-space(" Buick Skylark =)

substring(string, number, Returns a substring of the first argument, starting at a

number) specified position (the first number). The substring
continues for a specified number of characters (the second
number) or (if the second number is omitted) returns the
rest of the string.

Each of the following expressions resolves to Speed

substring(“Porsche Speedster®, 9, 5)
substring("Porsche Speed®, 9)

substring-after(string, string) Returns a substring of the first argument, starting at one
position after the first occurrence of the second string.

The following expression resolves to a space, then
Speedster.

substring-after("Porsche Speedster®, "e")

substring-before(string, string) Returns a substring of the first argument, starting at the
beginning of the first argument and ending at one position
before the first occurrence of the second string.

The following expression resolves to Porsche, then a space.

substring-before("Porsche Speedster®, "S®)

translate(string, string, string) Returns a variant of the first argument:

e Changes any character that matches a character
listed in the second argument

e Substitutes a character listed in the third
argument. If no substitution value is listed there,
the character is not returned from the function

The second and third arguments are a matching array of
characters. If the third argument is longer than the
second the extra positions have no effect If the third

2 of 3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Function Meaning

argument is shorter than the second, the missing position
removes a character from the returned string.

The second example in the next table shows a character

removal.

Invocation Returns
translate("98786", OX7X6
8", "X")

translate("98786", IXX6
877, *X")

translate("98786", OXPX6
87", "XPA")

30f3

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

User name:
Book: SOA for the Business Developer: Concepts, BPEL, and SCA

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Returns a Number
Each function in Table 6.4 returns a number.

Table 6.4. XPath 1.0 functions that return a number

Function Meaning

ceiling(number) Returns the value of a numeric expression, rounded

upward to the greater integer. Here are examples:

Invocation Returns
ceiling(2) 2
ceiling(2.01) 3
ceiling(-2) 2
ceiling(-2.01) -2
ceiling(-2.99) -2

Returns the number of nodes in a node set. Given our
main example, the following expression resolves to 5.

count(node set)

count(/descendant: :Vehicle[Make])

floor(number) Returns the value of a numeric expression, rounded
downward to the lesser integer. Here are examples:
Invocation Returns
floor(2) 2
floor(2.99) 2
floor(-2) -2
floor(-2.01) -3
floor(-2.99) -3

last() Returns the context size, as described earlier. In our main
example, the value of last() in the following expression is
2.

(/Insured/CarPolicy/Vehicle[2]/Make) [last()]

round(number) Returns the value of a numeric expression, rounded to the
nearest integer. The next examples show the effect of mid
points.
Invocation Returns
round(2.499) 2
round(2.5) 3

10of2

http://acmsel.safaribooksonline.com/print?xmlid=9781583470657/ch06le...

Function Meaning
round(-2.5) -2
round(-2.501) -3
string-length(string) Returns the number of characters in the argument. Given

our example, the following invocation returns 5 (the
number of letters in Honda).

string-length(/descendant: :Make[1])

sum(node set) Returns the sum of the numeric values in each node in a
node set. If the node includes non-numeric text, the
returned value is NaN (not a number).

Consider the following XML source

<?xml version="1.0"?>
<Options>
<Towing>50</Towing>
<Rental>20</Rental>
</Options>

The following expression resolves to 70.

sum(/0ptions/*)

2 of 2

	ch06.pdf
	ch06a.pdf
	ch06b.pdf
	ch06c.pdf
	ch06d.pdf
	ch06e.pdf
	ch06f.pdf
	ch06g.pdf
	ch06h.pdf
	ch06i.pdf
	ch06j.pdf
	ch06k.pdf
	ch06l.pdf
	ch06m.pdf
	ch06n.pdf
	ch06o.pdf

