ERwin

Methotis Guitde
40

%)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software of the user will have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

U 2001 Computer Associates International, Inc., One Computer Associates Plaza, Islandia, New York 11749. All
rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introduction

Intended Audience. 1-2
Typographical Conventions. 1-2

Chapter 2: Information Systems, Databases, and Models

Benefits of Data Modeling 2-1
Data Modeling Sessions 2-3
Session ROLes 2-3
Sample IDEF1X Modeling Methodology. 2-4
Logical Models 2-6
The Entity Relationship Diagram 2-6
The Key-Based Model 2-6
The Fully-Attributed (FA) Model 2-6
Physical Models 2-7
The Transformation Model 2-7
The DBMS Model 2-7
Benefits of Data Modeling in ERWin 2-8

Chapter 3: Constructing a Logical Model

The Entity-Relationship Diagram 3-2
Defining Entities and Attributes 3-3
Logical Relationships 3-4
Many-to-Many Relationships.......... 3-5

Validating the Design of the Logical Model 3-6

Data Model Example 3-7

Contents iii

Chapter 4: Designing a Key-Based Data Model

Identifying Types of Keys 4-2
Selecting a Primary Keyo 4-2
Designating Alternate Key Attributes......... 4-4
Designating Inversion Entry Attributes 4-4

Relationships and Foreign Key Attributes. 4-5
Dependent and Independent Entities 4-5
Identifying Relationships 4-7
Non-Identifying Relationships 4-7
Rolenames 4-9

Chapter 5: Naming and Defining Entities and Atftributes

Naming Entities and Attributes 5-1
Synonyms, Homonyms, and Aliases 5-2
Entity Definitions. 5-3
Definition References and Circularity 5-4
Constructing a Business Glossary. i 5-5
Attribute Definitions. 5-6
Rolenames 5-7
Definitions and Business Rules. 5-9

Chapter 6: Refining Model Relationships

Relationship Cardinality 6-2
Cardinality in Non-Identifying Relationships............. 6-4
Referential Integrity 6-5
Reading Referential Integrity Options. 6-7
RI, Cardinality, and Identifying Relationships 6-8
RI, Cardinality, and Non-Identifying Relationships. 6-9
Additional Relationship TYpes.t 6-10
Many-to-Many Relationships 6-11
N-ary Relationships. 6-13
Recursive Relationships 6-15
Subtype Relationships 6-17
Complete Versus Incomplete Subtype Structures. 6-20
Inclusive and Exclusive Relationships. i 6-21
When to Create a Subtype Relationship 6-22

iv. ERwin Methods Guide

Chapter 7: Normalization

Overview of the Normal Forms. 7-2
Functional Dependence (FD) 7-2
Full Functional Dependence. 7-2
First Normal Form (INF). e 7-2
Second Normal Form (2NF) 7-2
Third Normal Form (BNF).o 7-2

Common Design Problems. 7-3
Repeating Data Groupso i 7-3
Multiple Use of the Same Attribute 7-5
Multiple Occurrences of the Same Fact 7-8
Conflicting Facts 7-9
Derived Attributes 7-12
Missing Information. 7-13

Unification 7-14

How Much Normalization Is Enough?, 7-16

ERwin Support for Normalization 7-18
First Normal Form Support 7-18
Second and Third Normal Form Support i 7-19

Chapter 8: Creating a Physical Model

Creating a Physical Model 8-2
Summary of Logical and Physical Model Components 8-2
Denormalization 8-3

Appendix A: Dependent Entity Types

Classification of Dependent Entities. A-1

Glossary

Index

Contents v

Chapter

Intfroduction
|

Welcome to data modeling with ERwin. If you have never seen a model before,
the ERwin Methods Guide will help you understand what a model is, and what it
is good for. If you already have some experience with data and data models, you
know how useful they can be in understanding the requirements of your
business. A model can help you design new information systems or maintain
and modify existing ones.

Data modeling is not something that can be covered in a lot of detail in a short
document like this one. But by the time you have read it, you will understand
enough, even if you are just a beginner, to put ERwin’s methods to work for you.
Overall, the ERwin Methods Guide has the following purposes:

m To provide a basic level of understanding of the data modeling method used
by ERwin that is sufficient to do real database design.

m To introduce some of the descriptive power and richness of the IDEF1X and
IE modeling languages supported by ERwin and to provide a foundation for
future learning.

m To provide additional information so you can better understand ERwin’s
modeling features.

This document covers the methods of data modeling supported by ERwin, which
include:

m IDEF1X. The IDEF1X method was developed by the U.S. Air Force. It is now
used in various governmental agencies, in the aerospace and financial
industry, and in a wide variety of major corporations.

m IE (Information Engineering). The IE method was developed by James
Martin, Clive Finkelstein, and other IE authorities and is widely deployed in
a variety of industries.

Both methods are suited to environments where large scale, rigorous, enterprise-
wide data modeling is essential.

Infroduction 1-1

Infended Audience

Infended Audience

This manual is intended for:

m Novice database designers and data modelers as a primer on data modeling,
and as a guide to using the ERwin methods.

m Experienced data modelers and applications developers as a guide to
IDEF1X and IE data modeling in ERwin.

m Experienced IDEF1X or IE users as a guide to the features of IDEF1X and IE
supported by ERwin, and the mapping between these methods.

Typographical Conventions

This ERwin Methods Guide uses some special typographic conventions to identify
ERwin user interface controls and key terms that appear in the text.

Text ltem Convention Example

Entity Name All uppercase; followed =~ MOVIE COPY entity
by the word “entity” in
lowercase

Attribute Name All lowercase in “movie-name”

quotation marks; hyphen
replaces embedded

space(s)

Column Name All lowercase movie_name

Table Name All uppercase MOVIE_COPY

Verb Phrase All lowercase in angle <is available for rental
brackets as>

1-2 ERwin Methods Guide

Chapter

Information Systems, Databases,
»J and Models

Data modeling is the process of describing information structures and capturing
business rules in order to specify information system requirements. A data
model represents a balance between the specific needs of a particular RDBMS
implementation project, and the general needs of the business area that requires
it.

Structured system development approaches in general, and data-centered design
approaches specifically, invest heavily in front-end planning and requirements
analysis activities. Many of these “top-down” design approaches use ERwin data
modeling as a method for identifying and documenting the portion of system
requirements that relates to data. Process models, such as data flow diagram sets,
distribution models, and event/state models can be created in BPwin and other
tools to document processing requirements. Different levels of these models are
used during different development phases.

Benefits of Data Modeling

When created with the full participation of business and systems professionals,
the data model can provide many benefits. These benefits generally fall into the
following two classes:

1. Those primarily associated with the model (the product of the effort).

2. Those associated with the process of creating the model (the effort).

Information Systems, Databases, and Models 2-1

Benefits of Data Modeling

Examples of product m A data model is implementation-independent, so it does not require that the
benefits implementation is in any particular database or programming language.

m A data model is an unambiguous specification of what is wanted.

m The model is business user-driven. The content and structure of the model
are controlled by the business client rather than the system developer. The
emphasis is on requirements rather than constraints or solutions.

m The terms used in the model are stated in the language of the business, not
that of the system development organization.

m The model provides a context to focus discussions on what is important to
the business.

Examples of process m During early project phases, model development sessions bring together

benefits individuals from many parts of the business and provide a structured forum
in which business needs and policies are discussed. During these sessions, it
is often the case that the business staff, for the first time, meets others in
different parts of the organization who are concerned with the same needs.

m Sessions lead to development of a common business language with
consistent and precise definitions of terms used. Communication among
participants is greatly increased.

m Early phase sessions provide a mechanism for exchanging large amounts of
information among business participants and transferring much business
knowledge to the system developers. Later phase sessions continue that
transfer of knowledge to the staff who will implement the solution.

m Session participants are generally able to better see how their activities fit
into a larger context. And parts of the project can be seen in the context of the
whole. The emphasis is on “cooperation” rather than “separation.” Over
time, this can lead to a shift in values, and the reinforcement of a cooperative
philosophy.

m Sessions foster consensus and build teams.

Design of the data structures to support a business area is only one part of
developing a system. The analysis of processes (function) is equally important.
Function models describe “how” something is done. They can be presented as
hierarchical decomposition charts, data flow diagrams, HIPO diagrams, and so
forth. You will find, in practice, that it is important to develop both your function
models and data models at the same time. Discussion of the functions to be
performed by the system uncovers the data requirements. Discussion of the data
normally uncovers additional function requirements. Function and data are the
two sides of the system development coin.

2-2 ERwin Methods Guide

Data Modeling Sessions

ERwin provides direct support for process modeling and can work well with
many techniques. For example, Computer Associates also provides BPwin, a
function modeling tool that supports IDEF0, IDEF3 workflow, and data flow
diagram methods and can be used in conjunction with ERwin to complete an
analysis of process during a data modeling project.

Data Modeling Sessions

Session Roles

Creating a data model involves not only construction of the model, but also
numerous fact-finding sessions that uncover the data and processes used by a
business. Running good sessions, like running good meetings of any kind,
depends on a lot of preparation and “real-time” facilitation techniques. In
general, modeling sessions should include the right mix of business and technical
experts and should be facilitated. This means that modeling sessions are
scheduled well in advance, carefully planned to cover sets of focused material,
and orchestrated in such a way that desired results are achieved.

When possible, it is highly recommended that modeling of function and data be
done at the same time. This is because functional models tend to validate a data
model and uncover new data requirements. This approach also ensures that the
data model supports function requirements. To create both a function model and
data model in a single modeling session, it is important to include a data modeler
and a process modeler who are responsible for capturing the functions being
explored.

Formal, guided sessions, with defined roles for participants and agreed upon
procedures and rules, are a must. The following roles work well:

m The facilitator is the session guide. This person is responsible for arranging
the meetings and facilities, providing follow-up documentation, and
intervening during sessions, as necessary, to keep sessions on track and to
control the scope of the session.

m The data modeler is responsible for leading the group through the process of
developing and validating the model. The modeler develops the model, in
real-time if possible, in front of the group by asking pertinent questions that
bring out the important details and recording the resulting structure for all to
see. It is often possible (although somewhat difficult) for the same individual
to play both facilitator and data modeler roles.

Information Systems, Databases, and Models 2-3

Sample IDEF1X Modeling Methodology

m The data analyst functions as the scribe for the session and records the
definitions of all entities and attributes that make up the model. Based on
information from the business experts, the data analyst can also begin to
“package” entities and attributes into subject areas, manageable and
meaningful subsets of the complete data model.

m The subject matter experts in the business provide the business information
needed to construct the model. They are “business” not “systems” people.

m The manager, either from the “systems” or “business” community,
participates in the sessions in an assigned role (facilitator, subject matter
expert, and so forth) but has the additional responsibility of making
decisions as needed to keep the process moving. The manager has the
responsibility of “breaking ties” but only when absolutely necessary.

Sample IDEF1X Modeling Methodology

ERwin has been developed to support the IDEF1X and IE modeling standards.
The use of various levels of models within the IDEF1X method can be very
helpful in developing a system. General model levels are outlined in the IDEF1X
standard and are presented next. In practice, you may find it useful to expand or
contract the number of levels to fit individual situations.

The model levels generally span from a very wide but not too detailed view of
the major entities that are important to a business down to a level of precision
required to represent the database design in terms understandable by a
particular DBMS. At the very lowest level of detail, models are said to be
technology dependent. For example, a model for an IMS database will look very
different from a model for a DB2 database. At higher levels, models are
technology independent and may even represent information, which is not
stored in any automated system.

The modeling levels presented are well suited to a top-down system
development life cycle approach, in which successive levels of detail are created
during each project phase.

The highest level models come in two forms: Entity Relationship Diagram (ERD)
and Key-Based (KB). The Entity Relationship Diagram (ERD) identifies major
business entities and their relationships. The Key-Based (KB) Model sets the
scope of the business information requirement (all entities are included) and
begins to expose the detail.

2-4 ERwin Methods Guide

Sample IDEF1X Modeling Methodology

The lower level models also come in two forms: Fully Attributed (FA) and
Transformation Model (TM). The Fully Attributed (FA) Model is a third normal
form model which contains all of the detail for a particular implementation
effort. The Transformation Model (TM) represents a transformation of the
relational model into a structure, which is appropriate to the DBMS chosen for
implementation.

The Transformation Model, in most cases, is no longer in third normal form. The
structures have been optimized based on the capabilities of the DBMS, the data
volumes, and the expected access patterns and rates against the data. In a sense,
this is a picture of the eventual physical database design.

The database design is contained in the DBMS Model for the system. Depending
on the level of integration of the information systems of a business, the DBMS
Model may be a project level model or an area level model for the entire
integrated system.

These five modeling levels are presented in the following figure. Notice that the
DBMS Model can be at either an “Area Level” scope, or a “Project Level” scope.
It would not be uncommon to have single ERD and KB models for a business
and multiple DBMS Models, one for each implementation environment, and then
another set within that environment for “projects” which do not share databases.
In an ideal situation, there are a set of “Area Level” scope DBMS Models, one for
each environment, with complete data sharing across all projects in that
environment.

L SCOPE R
~ Cd
A <€
ENTITY-RELATIONSHIP DIAGRAM
AREA
LEVEL
KEY-BASED MODEL
o o] eee | Araie 2:
ATTRIBUTED
DETAIL MODEL MODEL
PROJECT
LEVEL
TRANSFORM TRANSFORM
MODEL LA R MODEL
<
& DBMS MODEL
v

IDEF1X Database Design Levels

Information Systems, Databases, and Models 2-5

Logical Models

Logical Models

There are three levels of logical models that are used to capture business
information requirements: the Entity Relationship Diagram (ERD), the Key-
Based (KB) Model, and the Fully Attributed (FA) model. The ERD and KB
models are also called “area data models” because they often cover a wide
business area that is larger than the business chooses to address with a single
automation project. In contrast, the FA model is a “project data model” because it
typically describes a portion of an overall data structure intended for support by
a single automation effort.

The Entity Relationship Diagram

The Entity Relationship Diagram is a high-level data model that shows the major
entities and relationships, which support a wide business area. This is primarily
a presentation or discussion model.

The objective of the entity relationship diagram is to provide a view of business
information requirements sufficient to satisfy the need for broad planning for
development of its information system. These models are not very detailed (only
major entities are included) and there is not much detail, if any, on attributes.
Many-to-many (non-specific) relationships are allowed and keys are generally
not included.

The Key-Based Model

A Key-Based Model describes the major data structures, which support a wide
business area. All entities and primary keys are included along with sample
attributes.

The objective of the key-based model is to provide a broad business view of data
structures and keys needed to support the area. This model provides a context in
which detailed implementation level models can be constructed. The model
covers the same scope as the Area ERD, but exposes more of the detail.

The Fully-Attributed (FA) Model

A Fully Attributed Model is a third normal form data model that includes all
entities, attributes, and relationships needed by a single project. The model
includes entity instance volumes, access paths and rates, and expected
transaction access patterns across the data structure.

2-6 ERwin Methods Guide

Physical Models

Physical Models

There are also two levels of physical models for an implementation project: the
Transformation Model and the DBMS Model. The physical models capture all of
the information that systems developers need to understand and implement a
logical model as a database system. The Transformation Model is also a “project
data model” that describes a portion of an overall data structure intended for
support by a single automation effort. ERwin supports individual projects within
a business area, allowing the modeler to separate a larger area model into
submodels, called subject areas. Subject areas can be developed, reported on, and
generated to the database in isolation from the area model and other subject
areas in the model.

The Transformation Model

The DBMS Model

The objectives of the transformation model are to provide the Database
Administrator (DBA) with sufficient information to create an efficient physical
database, to provide a context for the definition and recording of the data
elements and records that form the database in the data dictionary, and to help
the application team choose a physical structure for the programs that will access
the data.

When deemed appropriate for the development effort, the model can also
provide the basis for comparing the physical database design against the original
business information requirements to:

m Demonstrate that the physical database design adequately supports those
requirements.

m Document physical design choices and their implications, such as what is
satisfied, and what is not.

m Identify database extensibility capabilities and constraints.

The Transformation Model directly translates into a DBMS model, which
captures the physical database object definitions in the RDBMS schema or
database catalog. ERwin directly supports this model with its schema generation
function. Primary keys become unique indices. Alternate keys and inversion
entries also may become indices. Cardinality can be enforced either through the
referential integrity capabilities of the DBMS, application logic, or “after the fact”
detection and repair of violations.

Information Systems, Databases, and Models 2-7

Benefits of Data Modeling in ERwin

Benefits of Data Modeling in ERwin

Regardless of the type of DBMS you use or the types of data models you want to
develop, modeling your database in ERwin has many benefits. The most obvious
benefit is system documentation that can be used by database and application
development staff to define system requirements and to communicate among
themselves and with end-users.

A second benefit is to provide a clear picture of referential integrity constraints.
Maintaining referential integrity is essential in the relational model where
relationships are encoded implicitly.

A third benefit is the provision of a “logical” RDBMS-independent picture of
your database that can be used by automated tools to generate RDBMS-specific
information. This way, you can use a single ERwin diagram to generate DB2
table schemas, as well as schemas for other relational DBMSs.

One of the primary benefits of data modeling with ERwin is the ease with which
you will be able to produce a diagram summarizing the results of your data
modeling efforts and generate a database schema from that model.

2-8 ERwin Methods Guide

Chapter

3 Constructing a Logical Model

The first step in constructing a logical model is developing the Entity
Relationship Diagram (ERD), a high-level data model of a wide business area.
An entity-relationship diagram is made up of three main building blocks:
entities, attributes, and relationships. If you view a diagram as a graphical
language for expressing statements about your business, entities are the nouns,
attributes are the adjectives or modifiers, and relationships are the verbs.
Building a data model with ERwin is simply a matter of finding the right
collection of nouns, verbs, and adjectives and putting them all together.

The objective of the ERD is to provide a broad view of business information
requirements sufficient to plan for development of the business information
system. These models are not very detailed (only major entities are included) and
there is not much detail, if any, on attributes. Many-to-many (non-specific)
relationships are allowed and keys are generally not included. This is primarily a
presentation or discussion model.

An ERD may be divided into subject areas, which are used to define “business
views” or specific areas of interest to individual business functions. Subject areas
help reduce larger models into smaller, more manageable subsets of entities that
can be more easily defined and maintained.

There are many methods available for developing the ERD. These range from
formal modeling sessions (described in the previous chapter) to individual
interviews with business managers who have responsibility for wide areas.

This chapter introduces the data modeling method used by ERwin and provides
a brief overview of its richness and power for describing the information
structures of your business.

Constructing a Logical Model 3-1

The Enfity-Relationship Diagram

The Entity-Relationship Diagram

If you are familiar with a relational database structure, you know that the most
fundamental component of a relational database is the table. Tables are used to
organize and store information. A table is organized in columns and rows of
data. Each row contains a set of facts called an instance of the table.

In a relational database, all data values must also be atomic, which means that
each cell in the table can contain only a single fact. There is also a relationship
between the tables in the database. Each relationship is represented in an RDBMS
by sharing one or more columns in two tables.

Like the tables and columns that make up a physical model of a relational
database, an entity-relationship diagram (and all other logical data models)
includes equivalent components that let you model the data structures of the
business, rather than the database management system. The logical equivalent to
a table is an entity, and the logical equivalent to a column is an attribute.

In an ERD, an entity is represented by a box that contains the name of the entity.
Entity names are always singular — CUSTOMER not CUSTOMERS, MOVIE not
MOVIES, COUNTRY not COUNTRIES. By always using singular nouns, you
gain the benefit of a consistent naming standard and facilitate “reading” the
diagram as a set of declarative statements about entity instances.

The following diagram is one created by a hypothetical video store that needs to
track its customers, movies that can be rented or purchased, and rental copies of
movies that are in stock in the store.

CUSTOMER §

MOWIE REMTAL COPY E

Sample Entity-Relationship Diagram

In an ERD, a relationship is represented by a line drawn between the entities in
the model. A relationship between two entities also implies that facts in one
entity refer to, or are associated with, facts in another entity. In the previous
example, the video store needs to track information about CUSTOMERSs and
MOVIE RENTAL COPYs. The information in these two entities is related, and
this relationship can be expressed in a statement: A CUSTOMER rents one or
more MOVIE RENTAL COPYs.

3-2 ERwin Methods Guide

The Entity-Relationship Diagram

Defining Entities and Attributes

An entity is any person, place, thing, event, or concept about which information
is kept. More precisely, an entity is a set or collection of like individual objects
called instances. An instance is a single occurrence of a given entity. Each
instance must have an identity distinct from all other instances.

In the previous example, the CUSTOMER entity represents the set of all of the
possible customers of a business. Each instance of the CUSTOMER entity is a
customer. You can list information for an entity in a sample instance table, such
as the one shown next.

CUSTOMER
customer-id customer-name customer-address
10001 Ed Green Princeton, NJ
10011 Margaret Henley New Brunswick, NJ
10012 Tomas Perez Berkeley, CA
17886 Jonathon Walters New York, NY
10034 Greg Smith Princeton, NJ

Sample Instance Table for the CUSTOMER Entity

Each instance represents a set of facts about the related entity. In the previous
sample, each instance of the CUSTOMER entity includes information on the
“customer-id,” “customer-name,” and “customer-address.” In a logical model,
these properties are called the attributes of an entity. Each attribute captures a
single piece of information about the entity.

You can include attributes in an ERD to describe the entities in the model more
fully, as shown next:

WONIE
mavie id

mavie hame
maovie year
mavie description
mavie genre

CUSTOMER MOYIE REMTAL COPY

customer id mowie copy id
movie id

customer name
customer address
h

general condition
number of rentals

ERD with Attributes

Constructing a Logical Model 3-3

The Enfity-Relationship Diagram

Logical Relationships

Relationships represent connections, links, or associations between entities. They
are the “verbs” of a diagram that show how entities relate to each other. Easy-to-
understand rules help business professionals validate data constraints and
ultimately identify relationship cardinality.

Here are some examples:

m A TEAM <has> many PLAYERs.

m A PLANE-FLIGHT <transports> many PASSENGERs.

m A DOUBLES-TENNIS-MATCH <requires> exactly 4 PLAYERs.

m A HOUSE <is owned by> one or more OWNERSs.

m A SALESPERSON <sells> many PRODUCTs.

In all of these cases, the relationships are chosen so that the connection between
the two entities is what is known as one-to-many. This means that one (and only
one instance) of the first entity is related or connected to many instances of the

second entity. The entity on the “one-end” is called the parent entity. The entity
on the “many-end” is called the child entity.

Relationships are displayed as a line connecting two entities, with a dot on one
end, and a verb phrase written along the line. In the previous examples, the verb

phrases are the words inside the brackets, such as <sells>. Here is a diagram of
the relationship between PLANE-FLIGHTs and PASSENGERs on that flight.

PLANE-FLGHT transports PASSENGER

Relationship Example

3-4 ERwin Methods Guide

The Entity-Relationship Diagram

Many-to-Many Relationships

A many-to-many relationship, also called a non-specific relationship, represents
a situation where an instance in one entity relates to one or more instances in a
second entity and an instance in the second entity also relates to one or more
instances in the first entity. In the video store example, a many-to-many
relationship occurs between a CUSTOMER and a MOVIE COPY. From a
conceptual point of view, this many-to-many relationship indicates that “A
CUSTOMER <rents> many MOVIE COPYs” and “A MOVIE COPY <is rented

by> many CUSTOMERs.”
CUSTOMER
MOVIE-COPY
customernumber rents | J E——
customer-nams is rented by pp——
cugtomeraddress E gEnerEkeanden
customer-status-code §
CUSTOMER
MOVIE-COPY
customernumber rents | R ———
customer-name is rented by pp———
customeraddrass E geneEkeandien
customerstatus-code

Example of a Many-to-Many Relationship in IDEF1X (top) and IE (bottom)

Many-to-many relationships tend to be used in a preliminary stage of diagram
development, such as in an entity-relationship diagram (ERD), and are
represented in IDEF1X as a solid line with dots on both ends.

Because a many-to-many relationship can hide other business rules or
constraints, they should be fully explored at some point in the modeling process.
For example, sometimes a many-to-many relationship identified in early
modeling stages is mislabeled and is actually two one-to-many relationships
between related entities. Or, the business must keep additional facts about the
many-to-many relationship, such as dates or comments, and the result is that the
many-to-many relationship must be replaced by an additional entity to keep
these facts. All many-to-many relationships need to be fully discussed at later
modeling stages to ensure that the relationship is correctly modeled.

Constructing a Logical Model 3-5

Validating the Design of the Logical Model

Validating the Design of the Logical Model

If you choose your verb phrases correctly, you should be able to “read” a
relationship from the parent to the child using an “active” verb phrase. One of
the previous examples reads as:

A PLANE FLIGHT <transports> many PASSENGERs.

Verb phrases can also be read from the perspective of the child entity. You can
often read from the child entity perspective using “passive” verb phrases. For
example:

Many PASSENGERs <are transported by>a PLANE FLIGHT.

Because a data model exposes many of the business rules that describe the area
being modeled, reading the relationships helps you validate that the design of
the logical model is correct. Verb phrases provide a brief summary of the
business rules embodied by relationships. And although they do not precisely
describe the rules, verb phrases do provide an initial sense of how the entities are
connected.

It is a good practice to make sure that each verb phrase in the model results in
valid statements. Reading your model back to the business analysts and subject
matter experts is one of the primary methods of verifying that it correctly
captures the business rules.

3-6 ERwin Methods Guide

Data Model Example

Data Model Example

The following model of a database was constructed for a hypothetical video
store. A copy of the logical model of this diagram appears below.

CUSTOMER MOVIE

cugtomernumber mowie-number
customername (A1, IE1D mcwiz-name (AK1)
customeraddress BT mcnie- rating
custome retatus-code CUSTOMER R p—
Fonts uier /_ Subject Area
MOVIE-RENTAL-RECORD is in stock as
renting-customer.customernumber Fl)
masternumbser (FE) P
micvie-copy-number (FE)
rentakrecond-date MOVIE-COPY
rentakdats - master-numbermovie-number FR)
i -4 is rented under Mmowis-copy number
rentakstiatus generakcond tion
payme nt-amount
payme nt-date
Paryme nt statiis EMPLOYEE
e due-changes /_ subject Area
Os To=: 1 ~.,
4 . N,
’ may [ecene has imwolvement of kY
OVERDUE-NOTICE
PR ——Y EMPLOYEE INVOLVEMENT-RECORD
masternumber (FE) Smplkyes- number mcnie-copy-number (FE)
rentakrecond-date (FH) o employes-name (IE1) master-number Fl)
renting-customer Flg [IS listed on : | employes-addiess is imvolved with || rentakrecomrd-date Fi
o g ue- potice-d ate hire-date renting-customer (FE)
salary - = invohie ment-time-stamp
zun;pn:lﬁ.lv:-?\gtg-fr:\c{l?t supe risar.e mpkoyee- number (F1) | p employee-number [k)
... imvohee me nt-type
., L SUpeniases

Data Model of a Video Store

The data model of the Video Store, along with definitions of the objects
presented on it, makes the following assertions:

m A MOVIE is in stock as one or more MOVIE-COPYs. Information recorded
about a MOVIE includes its name, a rating, and a rental rate. Each MOVIE-
COPY has its general condition recorded.

m The store’s CUSTOMERs rent the MOVIE-COPYs. A MOVIE-RENTAL-
RECORD records the particulars of the rental of a MOVIE-COPY by a
CUSTOMER. The same MOVIE-COPY may, over time, be rented to many
CUSTOMERs.

s Each MOVIE-RENTAL-RECORD also records a due date for the movie and a
status indicating whether or not it is overdue. Depending on a CUSTOMER’s
previous relationship with the store, a CUSTOMER is assigned a credit status
code which indicates whether the store should accept checks or credit cards

for payment, or accept only cash.

Constructing a Logical Model 3-7

Data Model Example

The store’s EMPLOYEESs are involved with many MOVIE-RENTAL-
RECORDs, as specified by an involvement type. There must be at least one
EMPLOYEE involved with each record. Since the same EMPLOYEE might be
involved with the same rental record several times on the same day,
involvements are further distinguished by a time stamp.

An overdue charge is sometimes collected on a rental of a MOVIE-COPY.
OVERDUE-NOTICEs are sometimes needed to remind a CUSTOMER that a
tape needs to be returned. An EMPLOYEE is sometimes listed on an
OVERDUE-NOTICE.

The store keeps salary and address information about each of its
EMPLOYEEs. It sometimes needs to look up CUSTOMERs, EMPLOYEEs,
and MOVIEs by their names, rather than by their “numbers.”

This is a relatively small model, but it says a lot about the video rental store.
From it, you not only can get an idea of what a database for the business should
look like, you also get a good picture of the business. There are several different
types of graphical “objects” in this diagram. The entities, attributes, and
relationships, along with the other symbols, describe our business rules. In the
following chapters, you will learn more about what the different graphical
objects mean and how to use ERwin to create your own logical and physical data
models.

3-8 ERwin Methods Guide

Chapter

Designing a Key-Based Data
2 Model

A Key-Based Model is a data model that fully describes all of the major data
structures that support a wide business area. The goal of a key-based model is to
include all entities and attributes that are of interest to the business.

As its name suggests, a key-based model also includes keys. In a logical model, a
key identifies unique instances within an entity. When implemented in a
physical model, a key provides easy access to the underlying data.

Basically, the key-based model covers the same scope as the ERD but exposes
more of the detail, including the context in which detailed implementation level
models can be constructed.

MOWIE
Keys——» {movie id >
rravie narme
maovie year

movie description
maovie genre

CUSTOMER
customer id

MOWIE RENTAL CORPY
C o maovie copy id >

¥ rmovie id

custamer name
customer address
customer phone

general condition
number of rentals

Key-Based ERD Model

Designing a Key-Based Data Model 4-1

Identifying Types of Keys

Identifying Types of Keys

Entity and Non-Key
Areas

Whenever you create an entity in your data model, one of the most important
questions you need to ask is: “How can a unique instance be identified?” In
order to develop a correct logical data model, you must be able to uniquely
identify each instance in an entity.

In each entity in a data model, a horizontal line separates the attributes into two
groups, key areas and non-key areas. The area above the line is called the key
area, and the area below the line is called the non-key area or data area. The key
area of CUSTOMER contains “customer-id” and the data area contains
“customer-name,” “customer-address,” and “customer-phone.”

The key area contains the primary key for the entity. The primary key is a set of
attributes used to identify unique instances of an entity. The primary key may
be comprised of one or more primary key attributes, as long as the chosen
attributes form a unique identifier for each instance in an entity.

An entity usually has many non-key attributes, which appear below the
horizontal line. A non-key attribute does not uniquely identify an instance of an
entity. For example, a database may have multiple instances of the same
customer name, which infers that “customer-name” is not unique and would
probably be a non-key attribute.

Selecting a Primary Key

Choosing the primary key of an entity is an important step that requires some
serious consideration. Before you actually select a primary key, you may need to
consider several attributes, which are referred to as candidate key attributes.
Typically, the business user who has knowledge of the business and business
data can help identify candidate keys.

For example, to correctly use the EMPLOYEE entity in a data model (and later in
a database), you must be able to uniquely identify instances. In the customer
table, you could choose from several potential key attributes including: the
employee name, a unique employee number assigned to each instance of
EMPLOYEE, or a group of attributes, such as name and birth date.

The rules that you use to select a primary key from the list of all candidate keys
are stringent and can be consistently applied across all types of databases and
information. The rules state that the attribute or attribute group must:

m Uniquely identify an instance.
m Never include a NULL value.

= Not change over time. An instance takes its identity from the key. If the key
changes, it’s a different instance.

4-2 ERwin Methods Guide

Identifying Types of Keys

Be as short as possible, to facilitate indexing and retrieval. If you need to use
a key that is a combination of keys from other entities, make sure that each
part of the key adheres to the other rules.

For example, from the following list of candidate keys for an EMPLOYEE entity,
consider which attribute you would select as a primary key:

Employee-number
Employee-name
Employee-social-security number
Employee-birth-date

Employee-bonus-amount

If you use the rules previously listed to find candidate keys for EMPLOYEE, you
might compose the following analysis of each attribute:

“Employee-number” is a candidate key because it is unique for all
EMPLOYEEs,

“Employee-name” is probably not a good candidate because multiple
employees may have the same name, such as Mary Jones.

“Employee-social-security-number” is unique in most instances, but every
EMPLOYEE may not have one.

The combination of “employee-name” and “employee-birth-date” might
work (unless there is more than one John Smith born on the same date and
employed by our company). This could be a candidate key.

Only some EMPLOYEEs of our company are eligible for annual bonuses.
Therefore, “employee-bonus-amount” can be expected to be NULL in many
cases. As a result, it cannot be part of any candidate key.

After analysis, there are two candidate keys — one is “employee-number” and
the other is the group of attributes containing “employee-name” and “employee-
birth-date.” “Employee-number” is selected as the primary key because it is the
shortest and ensures uniqueness of instances.

When choosing the primary key for an entity, modelers often assign a surrogate
key, an arbitrary number that is assigned to an instance to uniquely identify it
within an entity. “Employee-number” is an example of a surrogate key. A
surrogate key is often the best choice for a primary key because it is short, can be
accessed the fastest, and ensures unique identification of each instance. Further, a
surrogate key can be automatically generated by the system so that numbering is
sequential and does not include any gaps.

Designing a Key-Based Data Model 4-3

Identifying Types of Keys

A primary key chosen for the logical model may not be the primary key needed
to efficiently access the table in a physical model. The primary key can be
changed to suit the needs and requirements of the physical model and database
at any point.

Designating Alternate Key Attributes

After you select a primary key from a list of candidate keys, you can designate
some or all of the remaining candidate keys as alternate keys. Alternate keys are
often used to identify the different indexes, which are used to quickly access the
data. In a data model, an alternate key is designated by the symbol (AKn), where
n is a number that is placed after the attributes that form the alternate key group.
In the EMPLOYEE entity, “employee-name” and “employee-birth-date” are
members of the alternate key group.

EMPLOYEE
employes-number

mployee-name (AK1
employee-gender
employee-hire-date
B

loyee-hirth-date (A
employee-honus-amount

Alternate Keys

Designating Inversion Entry Attributes

Unlike a primary key or an alternate key, an inversion entry is an attribute or set
of attributes that are commonly used to access an entity, but which may not
result in finding exactly one instance of an entity. In a data model, the symbol
IEn is placed after the attribute.

For example, in addition to locating information in an employee database using
an employee’s identification number, a business may want to search by
employee name. Often, a name search results in multiple records, which requires
an additional step to find the exact record. By assigning an attribute to an
inversion entry group, a non-unique index is created in the database.

4-4 ERwin Methods Guide

Relationships and Foreign Key Attributes

Note: An attribute can belong to an alternate key group as well as an inversion
entry group.

EMPLOYEE
employee-number

Aemployee-name (A1 ,IE1
ernployee- j
employee-hire-date
employee-535N
employee-bith-date (AK1)
employee-bonus-amount

Inversion Entry

Relationships and Foreign Key Attributes

A foreign key is the set of attributes that define the primary key in the parent
entity and that migrate through a relationship from the parent to the child entity.
In a data model, a foreign key is designated by the symbol (FK) after the attribute
name. Notice the (FK) next to “team-id” in the following figure.

TEAM FLAYER

team-id B playerid
team-id (FK)

Migrated Foreign Key (FK)

Dependent and Independent Entities

As you develop your data model, you may discover certain entities that depend
upon the value of the foreign key attribute for uniqueness. For these entities, the

foreign key must be a part of the primary key of the child entity (above the line)
in order to uniquely define each entity.

In relational terms, a child entity that depends on the foreign key attribute for

uniqueness is called a dependent entity. In IDEF1X notation, dependent entities
are represented as round-cornered boxes.

Designing a Key-Based Data Model 4-5

Relationships and Foreign Key Attributes

Entities that do not depend on any other entity in the model for identification are
called independent entities. In IE and IDEF1X, independent entities are
represented as square-cornered boxes.

TEAM PLAYER
player-id
team-id (FK)

tearn-id

Independent Dependent
Entity Entity

Types of Entities in a Data Model

Dependent entities are further classified as existence dependent, which means
the dependent entity cannot exist unless its parent does, and identification
dependent, which means that the dependent entity cannot be identified without
using the key of the parent. The PLAYER entity is identification dependent but
not existence dependent, because PLAYERs can exist if they are not on a TEAM.

In contrast, there are situations in which an entity is existence dependent on
another entity. Consider two entities: ORDER, which a business uses to track
customer orders, and LINE ITEM, which tracks individual items in an ORDER.
The relationship between these two entities can be expressed as An ORDER
<contains> one or more LINE ITEMS. In this case, LINE ITEM is existence
dependent on ORDER, because it makes no sense in the business context to track
LINE ITEMS unless there is a related ORDER.

4-6 ERwin Methods Guide

Relationships and Foreign Key Attributes

Identifying Relationships

In IDEF1X notation, the type of the relationship that connects two entities
enforces the concept of dependent and independent entities. If you want a
foreign key to migrate to the key area of the child entity (and create a dependent
entity as a result), you can create an identifying relationship between the parent
and child entities. A solid line connecting the entities indicates an identifying
relationship. In IDEF1X notation, the line includes a dot on the end nearest to the
child entity, as shown next.

TEAM PLAYER
player-id
team-id (FK)

Identifying Relationship in IDEF1X Notation

tearn-id B

In IE notation, the line includes a “crow’s foot” at the end of the relationship
nearest to the child entity.

TEAM PLAYER
: player-id
team-id (FK)

QD

Identifying Relationship in IE Notation

Note: Standard IE notation does not include rounded corners on entities. This is
an IDEF1X symbol that is included in IE notation in ERwin to ensure
compatibility between methods.

As you may find, there are advantages to contributing keys to a child entity
through identifying relationships in that it tends to make some physical system
queries more straightforward, but there are also many disadvantages. Some
advanced relational theory suggests that contribution of keys should not occur in
this way. Instead, each entity should be identified not only by its own primary
key, but also by a logical handle or surrogate key, never to be seen by the user of
the system. There is a strong argument for this in theory and those who are
interested are urged to review the work of E. F. Codd and C. J. Date in this area.

Designing a Key-Based Data Model 4-7

Relationships and Foreign Key Attributes

Non-Identifying Relationships

A non-identifying relationship also connects a parent entity to a child entity. But,
when a non-identifying relationship connects two entities, the foreign key
migrates to the non-key area of the child entity (below the line).

In ERwin, a dashed line connecting the entities indicates a non-identifying
relationship. If you connect the TEAM and PLAYER entities in a non-identifying
relationship, the “team-id” migrates to the non-key as shown next.

TEAM PLAYER
" player-id
team-id (FK)

Non-ldentifying Relationship in IDEF1X Notation (tfop) and IE Notation (bottom)

Because the migrated keys in a non-identifying relationship are not part of the
primary key of the child, non-identifying relationships do not result in any
identification dependency. In this case, PLAYER is considered an independent
entity, just like TEAM.

However, the relationship can reflect existence dependency if the business rule
for the relationship specifies that the foreign key cannot be NULL (“missing”). If
the foreign key must exist, this implies that an instance in the child entity can
only exist if an associated parent instance also exists.

Note: Identifying and non-identifying relationships are not a feature of the IE
methodology. However, this information is included in your ERwin diagram in
the form of a solid or dashed relationship line to ensure compatibility between IE
and IDEF1X methods.

4-8 ERwin Methods Guide

Relationships and Foreign Key Attributes

Rolenames

When foreign keys migrate from the parent entity in a relationship to the child
entity, they are serving double-duty in the model in terms of stated business
rules. To understand both roles, it is sometimes helpful to rename the migrated
key to show the role it plays in the child entity. This name assigned to a foreign
key attribute is called a rolename. In effect, a rolename declares a new attribute,
whose name is intended to describe the business statement embodied by the
relationship that contributes the foreign key.

TEAM PLAYER

team-id |

& player-team-id team-id (FR

Foreign Key with Rolename

The foreign key attribute of “player-team-id.team-id” in the PLAYER entity
shows the syntax for defining and displaying a rolename. The first half (before
the period) is the rolename. The second half is the original name of the foreign
key, sometimes called the base name.

Once assigned to a foreign key, a rolename migrates across a relationship just
like any other foreign key. For example, suppose that you extend the example to
show which PLAYERs have scored in various games throughout the season. The
“player-team-id” rolename migrates to the SCORING PLAY entity (along with
any other primary key attributes in the parent entity), as shown next.

TEAM PLAYER
player-id
player-team-id.team-id (FK)

MW

SCORING PLAY

player-id (FK)
player-team-id (FK)

Diagram Showing Migration of an FK Attfribute with a Rolename

Note: A rolename is also used to model compatibility with legacy data models in
which the foreign key was often named differently than the primary key.

Designing a Key-Based Data Model 4-9

Chapter

Naming and Defining Entities and
Sl Attributes

It is extremely important in data modeling, and in systems development in
general, to choose clear and well thought out names for objects. The result of
your efforts will be a clear, concise, and unambiguous model of a business area.

Naming standards and conventions are identical for all types of logical models,
including both the entity-relationship diagrams and key-based diagrams.

Naming Entities and Aftributes

The most important rule to remember when naming entities is that entity names
are always singular. This facilitates reading the model with declarative
statements such as “A FLIGHT <transports> zero or more PASSENGERs” and
“A PASSENGER <is transported by> one FLIGHT.” When you name an entity,
you are also naming each instance. For example, each instance of the
PASSENGER entity is an individual passenger, not a set of “passengers.”
Attribute names are also singular. For example, “person-name,” “employee-
SSN,” “employee-bonus-amount” are correctly named attributes. Naming
attributes in the singular helps to avoid normalization errors, such as
representing more than one fact with a single attribute. The attributes
“employee-child-names” or “start-or-end-dates” are plural, and highlight errors
in the attribute design.

A good rule of thumb when naming attributes is to use the entity name as a
prefix. The rule here is:

m Prefix qualifies

m Suffix clarifies

Using this rule, you can easily validate the design and eliminate many common
design problems. For example, in the CUSTOMER entity, you can name the
attributes “customer-name,” “customer-number,” “customer-address,” and so
forth. If you are tempted to name an attribute “customer-invoice-number,” you
use the rule to check that the suffix “invoice-number” tells you more about the
prefix “customer.” Since it does not, you must move the attribute to a more
appropriate location, such as INVOICE.

” o

Naming and Defining Entities and Attributes 5-1

Naming Enfities and Attributes

You may sometimes find that it is difficult to give an entity or attribute a name
without first giving it a definition. As a general principle, providing a good
definition for an entity or attribute is as important as providing a good name.
The ability to find meaningful names comes with experience and a fundamental
understanding of what the model represents.

Because the data model is a description of a business, it is best to choose
meaningful business names wherever that is possible. If there is no business
name for an entity, you must give the entity a name that fits its purpose in the
model.

Synonyms, Homonyms, and Aliases

Not everyone speaks the same language. Not everyone is always precise in the
use of names. Because entities and attributes are identified by their names in a
data model, you need to ensure that synonyms are resolved to ensure that they
do not represent redundant data. You then need to precisely define them so that
each person who reads the model can understand which facts are captured in
which entity.

It is also important to choose a name that clearly communicates a sense of what
the entity or attribute represents. For example, you get a clear sense that there is
some difference among things called PERSON, CUSTOMER, and EMPLOYEE.
Although they can all represent an individual, they have distinct characteristics
or qualities. However, it is the role of the business user to tell you whether or not
PERSON and EMPLOYEE are two different things or just synonyms for the same
thing.

Choose names carefully, and be wary of calling two different things by the same
name. For example, if you are dealing with a business area which insists on
calling its customers “consumers,” do not force or insist on the customer name.
You may have discovered an alias, another name for the same thing, or you may
have a new “thing” that is distinct from, although similar to, another “thing.” In
this case, perhaps CONSUMER is a category of CUSTOMER that can participate
in relationships that are not available for other categories of CUSTOMER.

You can enforce unique naming in the ERwin modeling environment. This way
you can avoid the accidental use of homonyms (words that are written the same
but have different meanings), ambiguous names, or duplication of entities or
attributes in the model.

5-2 ERwin Methods Guide

Entity Definitions

Entity Definitions

Descriptions

Defining the entities in your logical model is essential to the clarity of the model
and is a good way to elaborate on the purpose of the entity and clarify which
facts you want to include in the entity. Undefined entities or attributes can be
misinterpreted in later modeling efforts, and possibly deleted or unified based on
the misinterpretation.

Writing a good definition is more difficult than it might initially seem. Everyone
knows what a CUSTOMER is, right? Just try writing a definition of a
CUSTOMER that holds up to scrutiny. The best definitions are created using the
points of view of many different business users and functional groups within the
organization. Definitions that can pass the scrutiny of many, disparate users
provide a number of benefits including:

m Clarity across the enterprise
m Consensus about a single fact having a single purpose

m Easier identification of “categories,” groups of entities that are unique, but
have similar purposes or manage similar data

Most organizations and individuals develop their own conventions or standards
for definitions. In practice you will find that long definitions tend to take on a
structure that helps the reader to understand the “thing” being defined. Some of
these definitions can go on for several pages (CUSTOMER, for example). As a
starting point, you may want to adopt the following items as “standards” for the
structure of a definition, even though IDEF1X and IE do not provide standards
for definitions:

m Description
m Business example

s Comments
Each of these components is discussed more fully next.

A description should be a clear and concise statement that tells whether an
object is or is not the thing you are trying to define. Often such descriptions can
be fairly short. Be careful, however, that the description is not too general or
uses terms that have not been defined. Here are a couple of examples, one of
good quality and one which is questionable. For example, “A COMMODITY is
something that has a value that can be determined in an exchange.”

This is a good description because, after reading it, you know that something is a
COMMODITY if someone is, or would be, willing to trade something for it. If
someone is willing to give you three peanuts and a stick of gum for a marble,
then you know that a marble is a COMMODITY. For example, “A CUSTOMER is
someone who buys something from our company.”

Naming and Defining Enfities and Atftributes 5-3

Entity Definitions

Business Examples

Comments

This is not a good description. You can easily misunderstand the word
“someone” if you know that the company also sells products to other businesses.
Also, the business may want to track potential CUSTOMERSs, not just those who
have already bought something from the company. You could also define
“something” more fully to describe whether the sale is of products, services, or
some combination of the two.

It is a good idea to provide typical business examples of the thing being
defined, because good examples can go a long way to help the reader
understand a definition. Although they are a bit “unprofessional,” comments
about peanuts and marbles can help a reader to understand the concept of a
COMMODITY. The definition said that it had “value.” The example can help to
show that value is not always measured in “money.”

You can also include general comments about who is responsible for the
definition and who is the source, what state it is in, and when it was last
changed as a part of the definition. For some entities, you may also need to
explain how it and a related entity or entity name differ. For instance, a
CUSTOMER might be distinguished from a PROSPECT.

Definition References and Circularity

If you open up a dictionary, you may find a situation like this:

m TERM-1 Definition includes reference to, or is based on TERM-2

m TERM-2 Definition includes reference to, or is based on TERM-3

m TERM-3 Definition includes reference to, or is based on TERM-1

The individual definitions look good, but when viewed together are found to be

“circular.” Without some care, this can happen with entity and attribute
definitions. For example:

m CUSTOMER: Someone who buys one or more of our PRODUCTSs
m PRODUCT: Something we offer for sale to CUSTOMERs

It is important when you define entities and attributes in your data model that
you avoid these circular references.

5-4 ERwin Methods Guide

Entity Definitions

Constructing a Business Glossary

It is often convenient to make use of common business terms when defining an
entity or attribute. For example, “A CURRENCY-SWAP is a complex agreement
between two PARTYs in which they agree to exchange cash flows in two
different CURRENCYs over a period of time. Exchanges can be fixed over the
term of the swap, or may float. Swaps are often used to hedge currency and
interest rate risks.”

In this example, defined terms within a definition are highlighted. Using a style
like this makes it unnecessary to define terms each time they are used, since
people can look them up whenever needed.

If it will be convenient to use, for example, common business terms that are not
the names of entities or attributes, it is a good idea to provide base definitions of
these terms and refer to these definitions. A glossary of commonly used terms,
separate from the model, can be used. Such common business terms are
highlighted with bold-italics, as shown in the previous example.

It may seem that a strategy like this will lead initially to a lot of flipping back and
forth among definitions. The alternative, however, is to completely define each
term every time it is used. When these “internal definitions” appear in many
places, they need to be maintained in many places, and the probability that a
change will be applied to all of them at the same time is very small.

Developing a glossary of common business terms can serve several purposes. It
can become the “base” for use in modeling definitions, and it can, all by itself, be
of significant value to the business in helping people to communicate.

Naming and Defining Enfities and Atftributes 5-5

Attribute Definitions

Attribute Definitions

As with entities, it is important to define all attributes clearly. The same rules
apply. By comparing an attribute to a definition, you should be able to tell if it
fits. However, you should beware of incomplete definitions; for example,
“account-open-date” defined as, “The date on which the ACCOUNT was
opened.” A further definition of what is meant by “opened” is needed before the
definition is clear and complete.

Attribute definitions generally should have the same basic structure as entity
definitions, including a description, examples, and comments. The definitions
should also contain, whenever possible, rules that specify which facts are
accepted as valid values for that attribute.

A validation rule identifies a set of values that an attribute is allowed to take; it
constrains or restricts the domain of values that are acceptable. These values
have meanings in both an abstract and a business sense. For example, “person-
name,” if it is defined as the preferred form of address chosen by the PERSON, is
constrained to the set of all character strings. You can define any validation rules
or valid values for an attribute as a part of the attribute definition. You can assign
these validation rules to an attribute using a domain. Supported domains include
text, number, datetime, and blob.

Definitions of attributes, such as codes, identifiers, or amounts, often do not lend
themselves to good business examples. So, including a description of the
attribute’s validation rules or valid values is usually a good idea. When defining
a validation rule, it is good practice to go beyond listing the “values” that an
attribute can take. Suppose you define the attribute “customer-status” as follows:

Customer-status: A code that describes the relationship between the CUSTOMER and
our business. Valid values: A, P, F, N.

The validation rule specification is not too helpful because it does not define
what the codes mean. You can better describe the validation rule using a table or
list of values, such as the one following;:

Valid Value Meaning

A: Active The CUSTOMER is currently involved in a
purchasing relationship with our company.

P: Prospect Someone with whom we are interested in cultivating
a relationship, but with whom we have no current
purchasing relationship.

5-6 ERwin Methods Guide

Rolenames

Rolenames

Valid Value Meaning

F: Former The CUSTOMER relationship has lapsed. In other
words, there has been no sale in the past 24 months.

N: No business accepted The company has decided that no business will be
done with this CUSTOMER.

When a foreign key is contributed to a child entity through a relationship, you
may need to write a new or enhanced definition for the foreign key attributes
that explains their usage in the child entity. This is certainly the case when the
same attribute is contributed to the same entity more than once. These duplicated
attributes may appear to be identical, but because they serve two different
purposes, they cannot have the same definition.

Consider the following example. Here you see a FOREIGN-EXCHANGE-TRADE
with two relationships to CURRENCY.

CURRENCY
currency-code ———
CUTTENCY-NAMe [~ s bDug’ht hy FOREGN-EXCHANGE-TRADE

, |j trade-id
is 5ol by |
| — bought-currency-code currency-code (FK)

| bought-currency-amount
—_—— sold-currency-code currency-code (FK)
sold-currency-amount

The key of CURRENCY is “currency-code,” (the identifier of a valid CURRENCY
that you are interested in tracking). You can see from the relationships that one
CURRENCY is “bought by,” and one is “sold by” a FOREIGN-EXCHANGE-
TRADE.

You see also that the identifier of the CURRENCY (the “currency-code”) is used
to identify each of the two CURRENCYs. The identifier of the one that is bought
is called “bought-currency-code” and the identifier of the one that is sold is
called “sold-currency-code.” These rolenames show that these attributes are not
the same thing as “currency-code.”

Naming and Defining Enfities and Attributes 5-7

Rolenames

It would be somewhat silly to trade a CURRENCY for the same CURRENCY at
the same time and exchange rate. Thus, for a given transaction (instance of
FOREIGN-EXCHANGE-TRADE) “bought-currency-code” and “sold-currency-
code” must be different. By giving different definitions to the two rolenames,
you can capture the difference between the two currency codes.

Attribute/Rolename Attribute Definition
currency-code The unique identifier of a CURRENCY.
bought-currency-code The identifier (“currency-code”) of the

CURRENCY bought by (purchased by) the
FOREIGN-EXCHANGE-TRADE.

sold-currency-code The identifier (“currency-code”) of the
CURRENCY sold by the FOREIGN-EXCHANGE-
TRADE.

The definitions and validations of the bought and sold codes are based on
“currency-code.” “Currency-code” is called a base attribute.

The IDEF1X standard dictates that if two attributes with the same name migrate
from the same base attribute to an entity, that the attributes must be unified. The
result of unification is a single attribute migrated through two relationships.
Because of the IDEF1X standard, ERwin automatically unifies foreign key
attributes, as well. If you do not want to unify migrated attributes, you can
rolename the attributes at the same time that you name the relationship, in
ERwin’s Relationship Editor.

5-8 ERwin Methods Guide

Definitions and Business Rules

Definitions and Business Rules

Business rules have been mentioned earlier as an integral part of the data model.
These rules take the form of relationships, rolenames, candidate keys, defaults,
and other modeling structures not yet explored, including generalization
categories, referential integrity, and cardinality. Business rules are also captured
in entity and attribute definitions and validation rules.

For example, the CURRENCY entity in the previous figure could be defined
either as the set of all valid currencies recognized anywhere in the world, or
could be defined as the subset of these which our company has decided to use in
its day to day business operations. This is a subtle, but important distinction. In
the latter case, there is a business rule, or “policy statement,” involved.

This rule manifests itself in the validation rules for “currency-code.” It restricts
the valid values for “currency-code” to those that are used by the business.
Maintenance of the business rule becomes a task of maintaining the table of valid
values for CURRENCY. To permit or prohibit trading of CURRENCYs, you
simply create or delete instances in the table of valid values.

The attributes “bought-currency-code” and “sold-currency-code” are similarly
restricted. Both are further restricted by a validation rule that says “bought-
currency-code” and “sold-currency-code” cannot be equal. Therefore, each is
dependent on the value of the other in its actual use. Using ERwin, validation
rules can be addressed in the definitions of attributes, and can also be defined
explicitly using validation rules, default values, and valid value lists.

Naming and Defining Enfities and Attributes 5-9

Chapter

6 Refining Model Relationships

Relationships are a bit more complex than they might seem at first. They carry a
lot of information. Some might say that they are the heart of the data model,
because, to a great extent, they describe the rules of the business and the
constraints on creating, modifying, and deleting instances.

For example, you can use cardinality to define exactly how many instances are
involved in both the child and parent entities in the relationship. You can further
specify how you want to handle database actions such as INSERT, UPDATE, and
DELETE using referential integrity rules.

Data modeling also supports highly complex relationship types that enable you
to construct a logical model of your data that is understandable to both
“business” and “systems” experts.

Refining Model Relationships 6-1

Relationship Cardinality

Relationship Cardinality

The idea of “many” in a one-to-many relationship does not mean that there has
to be more than one instance of the child connected to a given parent. Instead the
“many” in one-to-many really means that there are zero, one or more instances
of the child paired up to the parent.

Cardinality is the relational property that defines exactly how many instances
appear in a child table for each corresponding instance in the parent table.
IDEF1X and IE differ in the symbols that are used to specify cardinality.
However, both methods provide symbols to denote one or more, zero or more,
zero or one, or exactly N, as explained in the following table.

Cardinality IDEF1X Notation IE Notation

Description Identifying Non-identifying Identifying Non-identifying

One to zero, one, or
more

One to one or more

One to zero or one

{)
S,

Zero or one to zero,
one, or more (non-
identifying only)

(
30+ G-

Zero or one to zero
or one (non-
identifying only)

_G__

6-2 ERwin Methods Guide

Relationship Cardinality

Cardinality lets you specify additional business rules that apply to the
relationship. In the following example, the business has decided to identify each
MOVIE COPY based on both the foreign key “movie-number” and a surrogate
key “copy-number.” Further, each MOVIE is available as one or more MOVIE
COPYs. The business has also stated that the relationship is identifying, that
MOVIE COPY cannot exist unless there is a corresponding MOVIE.

MOVIE MCM_IE COPY
- - movie number (FK)
movie numoer is available as movie copy number

e)

Cardindlity in a One-to-Many Identifying Relationship

The MOVIE-MOVIE COPY model also specifies the cardinality for the
relationship. The relationship line shows that there will be exactly one MOVIE,
and only one, participating in a relationship. This is because MOVIE is the parent
in the relationship.

By making MOVIE-COPY the child in the relationship (shown with a dot in
IDEF1X), the business defined a MOVIE-COPY as one of perhaps several
rentable copies of a movie title. The business also determined that to be included
in the database, a MOVIE must have at least one MOVIE-COPY. This makes the
cardinality of the “is available as” relationship one-to-one or more. The “P”
symbol next to the dot represents cardinality of “one or more.” As a result, you
also know that a MOVIE with no copies is not a legitimate instance in this
database.

In contrast, the business might want to know about all of the MOVIEs in the
world, even those for which they have no copies. So their business rule is that for
a MOVIE to exist (be recorded in their information system) there can be zero,
one, or more copies. To record this business rule, the “P” is removed. When
cardinality is not explicitly indicated in the diagram, cardinality is one-to-zero,
one or more.

Refining Model Relationships 6-3

Relationship Cardinality

Cardinality in Non-ldentifying Relationships

Non-identifying relationships contribute keys from a parent to a child entity. But,
by definition, some (or all) of the keys do not become part of the key of the child.

This means that the child will not be identification-dependent on the parent. And
there can be situations where an entity at the “many” end of the relationship can

exist without a “parent,” that is, it is not existence-dependent.

If the relationship is mandatory from the perspective of the child, then the child is
existence-dependent on the parent. If it is optional, the child is neither existence
nor identification-dependent with respect to that relationship (although it may
be dependent in other relationships). To indicate the optional case, IDEF1X
includes a diamond at the parent end of the relationship line and IE includes a
circle.

SEAT

PASSENGER
passenger-id

seat number

may accupy

(Fl)

passengernam

FASSENGER

passenger-id

pasSEnger-nam

passenger-id

SEAT
seat number

passenger-id (FK)

Cardindlity in a One-to-Many, Non-Identifying Relationship Using IDEF1X (top) or IE
(bottom)

In the example, the attribute “passenger-id” is a foreign key attribute of SEAT.
Because the “passenger-id” does not identify the SEAT, it identifies the
PASSENGER occupying the SEAT, the business has determined that the
relationship is non-identifying. The business has also stated that the SEAT can
exist without any PASSENGER, so the relationship is optional. When a
relationship is optional, the diagram includes either a diamond in IDEF1X or a
circle in IE notation. Otherwise, the cardinality graphics for non-identifying
relationships are the same as those for identifying relationships.

The cardinality for the relationship, indicated here with a “Z” in IDEF1X and a
single line in IE, states that a PASSENGER <may occupy> zero or one of these
SEATSs on a flight. Each SEAT can be occupied, in which case the PASSENGER
occupying the seat is identified by the “passenger-id,” or it can be unoccupied, in
which case the “passenger-id” attribute will be empty (NULL).

6-4 ERwin Methods Guide

Referential Integrity

Referential Integrity

Because a relational database relies on data values to implement relationships,
the integrity of the data in the key fields is extremely important. If you change a
value in a primary key column of a parent table, for example, you must account
for this change in each child table in which the column appears as a foreign key.
The action that is applied to the foreign key value varies depending on the rules
defined by the business.

For example, a business that manages multiple projects might track its
employees and projects in a model similar to the one following. The business has
determined already that the relationship between PROJECT and PROJECT-
EMPLOYEE is identifying, so the primary key of PROJECT becomes a part of the
primary key of PROJECT-EMPLOYEE.

EMPLOYEE PROJECT
employee-id project-id
‘ i5 assigned to has as project members

FROJECT-EMPLOYEE

emplovee-id (FK)
project-id (FK)

start-date ‘

end-date

PROJECT-EMPLOYEE Model

In addition, the business decides that for each instance of PROJECT-EMPLOYEE
there is exactly one instance of PROJECT. This means that PROJECT-EMPLOYEE
is existence-dependent on PROJECT.

What would happen if you were to delete an instance of PROJECT?

If the business decided that it did not want to track instances in PROJECT-
EMPLOYEE if PROJECT is deleted, you would have to delete all instances of
PROJECT-EMPLOYEE that inherited part of their key from the deleted
PROJECT.

Refining Model Relationships 6-5

Referential Integrity

The rule that specifies the action taken when a parent key is deleted is called
referential integrity. And the referential integrity option chosen for this action in
this relationship is cascade. Each time an instance of PROJECT is deleted, this
delete cascades to the PROJECT-EMPLOYEE table and causes all related
instances in PROJECT-EMPLOYEE to be deleted, as well.

Available actions for referential integrity include not only cascade, but also
restrict, set null, and set default. Each of the options is explained next:

m Cascade. Each time an instance in the parent entity is deleted, each related
instance in the child entity must also be deleted.

m Restrict. Deletion of an instance in the parent entity is prohibited if there are
one or more related instances in the child entity, or deletion of an instance in
the child entity is prohibited if there is a related instance in the parent entity.

m Set Null. Each time an instance in the parent entity is deleted, the foreign key
attribute(s) in each related instance in the child entity are set to NULL.

m Set Default. Each time an instance in the parent entity is deleted, the foreign
key attribute(s) in each related instance in the child entity are set to the
specified default value.

m <None>. No referential integrity action is required. Not every action must
have a referential integrity rule associated with it. For example, a business
may decide that referential integrity is not required when deleting an
instance in a child entity. This is a valid business rule in cases where the
cardinality is zero or one to zero, one or more, because instances in the child
entity can exist even if there are no related instances in the parent entity.

Although referential integrity is not a formal part of the IDEF1X or IE languages,
it does capture business rules that indicate how the completed database should
work, so it is a critical part of data modeling. Because of this, ERwin provides a
method for both capture and display of referential integrity rules.

Once referential integrity is defined, the facilitator or analyst should test the
referential integrity rules defined by the business users by asking questions or
working through different scenarios that show the results of the business
decision. When the requirements are defined and fully understood, the facilitator
or analyst can recommend specific referential integrity actions, like restrict or
cascade.

6-6 ERwin Methods Guide

Referential Integrity

Reading Referential Integrity Options

Referential integrity rules vary depending on:

m Whether or not the entity is a parent or child in the relationship
m The database action that is implemented

As a result, in each relationship there are six possible actions for which
referential integrity can be defined:

m PARENT INSERT

m PARENT UPDATE

m PARENT DELETE

s CHILD INSERT

s CHILD UPDATE

s CHILD DELETE

The following example shows referential integrity rules in the EMPLOYEE-

PROJECT model.
EMPLOYEE PROJECT
employee-id project-id

D:C| s assigned to halspzas project members |D:C
LR : :

ﬁ;n‘ ‘U:R
PROJECT-EMPLOYEE
employee-id (FK)
project-id (FK)

start-date
end-date

Referential Integrity Example

The referential integrity rules captured in the previous example show the
business decision to cascade all deletions in the PROJECT entity to the PROJECT-
EMPLOYEE entity. This rule is called PARENT DELETE CASCADE, and is
noted in the diagram by the letters "D:C" placed at the parent end of the specified
relationship. The first letter in the referential integrity symbol always refers to
the database action: I(Insert), U(Update), or D(Delete). The second letter refers to
the referential integrity option: C(Cascade), R(Restrict), SN(Set Null), and SD(Set
Default).

Refining Model Relationships 6-7

Referential Integrity

In the previous example, no referential integrity option has been specified for
PARENT INSERT, so referential integrity for insert (I:) is not displayed on the
diagram.

RI, Cardinality, and Identifying Relationships

In the previous example, the relationship between PROJECT and PROJECT-
EMPLOYEE is identifying. Therefore, the valid options for referential integrity
for the parent entity in the relationship, PROJECT, include cascade and restrict.

Cascade indicates that all instances of PROJECT-EMPLOYEE that are affected by
the deletion of an instance of PROJECT should also be deleted. Restrict indicates
that a PROJECT cannot be deleted until all instances of PROJECT-EMPLOYEE
that have inherited its key have been deleted. If there are any left, the delete is
“restricted.”

Why would you want to restrict the deletion? One reason might be that the
business needs to know other facts about a PROJECT-EMPLOYEE such as the
“date started” on the project. If you cascade the delete, you lose this
supplementary information.

In the case of updating an instance in the parent entity, the business has also
determined that the updated information should cascade to the related instances
in the child entity.

As you can see in the example, different rules apply when an instance is inserted,
updated, or deleted in the child entity. When an instance is inserted, for example,
the action is set to restrict. This rule appears as "L:R" placed next to the child
entity in the relationship. This means that an instance can be added to the child
entity only if the referenced foreign key matches an existing instance in the
parent entity. So, you can insert a new instance in PROJECT-EMPLOYEE only if
the value in the key field matches a key value in the PROJECT entity.

6-8 ERwin Methods Guide

Referential Integrity

RI, Cardinality, and Non-Identifying Relationships

If the business decides that PROJECT-EMPLOYEEs are not existence or
identification-dependent on PROJECT, you can change the relationship between
PROJECT and PROJECT-EMPLOYEE to optional, non-identifying. In this type of
relationship, the referential integrity options are very different.

EMPLOYEE PROJECT
employes-id project-id
‘ i5 assigned to has as project members<F
R Ll 2.

@
PROJECT-EMPLOYEE
| employee-id (FK) |
project-id (FK)

start-date
end-date

Referential Integrity for a Non-Identifying Relationship

Because a foreign key contributed across a non-identifying relationship is
allowed to be NULL, one of the referential integrity options you could specify for
PARENT DELETE is "set null." Set null indicates that if an instance of PROJECT
is deleted, then any foreign key inherited from PROJECT in a related instance in
PROJECT-EMPLOYEE should be set to NULL. The delete does not cascade as in
our previous example, and it is not prohibited (as in restrict). The advantage of
this approach is that you can preserve the information about the PROJECT-
EMPLOYEE while effectively breaking the connection between the PROJECT-
EMPLOYEE and PROJECT.

Decisions to use cascade or set null reflect business decisions about maintaining
the “historical” knowledge of relationships represented by the foreign keys.

Refining Model Relationships 6-9

Additional Relationship Types

Additional Relationship Types

Relationships define whether the child entity is dependent or independent of the
parent entity and how many instances are related in parent and child entities. As

you

develop a logical model, you may find relationships that do not fall into the

standard, one-to-many relationships discussed in previous chapters. These
relationships include:

Many-to-many relationships. A relationship where one entity <owns> many
instances of a second entity, and the second entity also <owns> many
instances of the first entity. For example, an EMPLOYEE <has> one or more
JOB TITLEs, and a JOB TITLE <is applied to> one or more EMPLOYEEs.

N-ary relationships. A simple one-to-many relationship between two entities
is termed binary. When a one-to-many relationship exists between two or
more parents and a single child entity, it is termed an n-ary relationship.

Recursive relationships. Entities that have a relationship to themselves take
part in recursive relationships. For example, for the EMPLOYEE entity, you
could include a relationship to show that one EMPLOYEE <manages> one or
more EMPLOYEEs. This type of relationship is also used for bill-of-materials
structures, to show relationships between parts.

Subtype relationships. Related entities are grouped together so that all
common attributes appear in a single entity, but all attributes that are not in-
common appear in separate, related entities. For example, the EMPLOYEE
entity could be subtyped into FULL-TIME and PART-TIME.

Each of these relationship types is discussed more fully later in this chapter.

6-10 ERwin Methods Guide

Many-to-Many Relationships

Many-to-Many Relationships

In key-based and fully-attributed models, relationships must relate zero or one
instances in a parent entity to a specific set of instances in a child entity. As a
result of this rule, many-to-many relationships that were discovered and
documented in an ERD or earlier modeling phase must be broken down into a
pair of one-to-many relationships.

STUDENT COURSE
student-id course-id
student-name COUrSe-name

The previous example shows a many-to-many relationship between STUDENTSs
and COURSEs. If you did not eliminate the many-to-many relationship between
COURSE and STUDENT, for example, the key of COURSE would be included in
the key of STUDENT, and vice versa. But COURSEs are identified by their own
keys, and likewise for STUDENTS; creating an endless loop!

You can eliminate the many-to-many relationship by creating an associative
entity. In the following example, the many-to-many relationship between
STUDENT and COURSE is resolved by adding the COURSE-ROSTER entity.

STUDENT COURSE
student-id course-id
student-name course-name

COURSE-ROSTER

STUDENT COURSE student-id (FK)
student-id % J course-id course-id (FK)

student-name COUrSe-name course-time

Resolving the STUDENT-COURSE Relationship Using an Associative Entity

COURSE-ROSTER is an associative entity, meaning it is used to define the
association between two related entities.

Many-to-many relationships often hide meaning. In the diagram with a many-to-
many relationship, you know that a STUDENT enrolls in many COURSEs, but
no information is included to show how. When you resolve the many-to-many
relationship, you see not only how the entities are related, but uncover additional
information, such as the “course-time,” which also describes facts about the
relationship.

Refining Model Relationships 6-11

Many-to-Many Relationships

Once the many-to-many relationship is resolved, you are faced with the
requirement to include relationship verb phrases that validate the structure.
There are two ways to do this: construct new verb phrases or use the verb
phrases as they existed for the many-to-many relationship. The most
straightforward way is to continue to read the “many-to-many” relationship,
through the associative entity. Therefore, you can read A STUDENT <enrolls in>
many COURSEs and A COURSE <is taken by> many STUDENTSs. Many
modelers adopt this style for constructing and reading a model.

There is another style, which is equally correct, but a bit more cumbersome. The
structure of the model is exactly the same, but the verb phrases are different, and
the model is “read” in a slightly different way. In this example, you would read:
A STUDENT <enrolls in a COURSE recorded in> one or more COURSE-
ROSTERs, and A COURSE <is taken by a STUDENT recorded in> one or more
COURSE-ROSTERs.

STUDENT COURSE

student-id course-id

student-name Course-name

entolls in a is taken by

COURSE a STUDENT

recarded in recarded in
COURSE-ROSTER

student-id (FK)

course-id (FK)

| course-time

Reading Relationships through Associative Entities

Although the verb phrases have gotten fairly long, the reading follows the
standard pattern; reading directly from the parent entity to the child.

Whichever style you choose, be consistent. Deciding how to record verb phrases
for many-to-many relationships is not too difficult when the structures are fairly
simple, as in our examples. However, this can become more difficult when the
structures become more complex, such as when the entities on either side of the
associative entities are themselves associative entities, which are there to
represent other many-to-many relationships.

6-12 ERwin Methods Guide

N-ary Relationships

N-ary Relationships

When a single parent-child relationship exists, the relationship is called binary.
All of the previous examples of relationships to this point have been binary
relationships. However, when creating a data model, it is not uncommon to come
across n-ary relationships, the modeling name for relationships between two or
more parent entities and a single child table. An example of an n-ary relationship
is shown next.

COMPANY PRODUCT CUSTOMER
company-id product-id customer-id
company-name product-name customer-name

is purchgsed by
sells signs

o

CONTRACT

company-id (FK)
product-id (FK)

customer-id (FE)

contract-detail

N-ary Relationship

Like many-to-many relationships, three-, four-, or “n-ary” relationships are valid
constructs in entity-relationship diagrams. Also like many-to-many relationships,
n-ary relationships should be resolved in later models using a set of binary
relationships to an associative entity.

If you consider the business rule stated in the previous example, you can see that
a CONTRACT represents a three-way relationship among COMPANY,
PRODUCT, and CUSTOMER. The structure indicates that many COMPANYs
sell many PRODUCTSs to many CUSTOMERSs. When you see a relationship like
this, however, you know that there are business questions begging to be
answered. For example, “Must a product be offered by a company before it can
be sold?” “Can a customer establish a single contract including products from
several different companies?” and, “Do you need to keep track of which
customers ‘belong to” which companies?” Depending on the answers, the
structures may change.

Refining Model Relationships 6-13

N-ary Relationships

If, for example, the answer to the question "Must a product be offered by a
company before it can be sold?” is “yes,” then you would have to change the

structure as shown.

COMPANY PRODUCT CUSTOMER
company-id product-id customer-id
company-name product-name customer-name
offers
sold in signs
CONTRACT

FRODUCT-OFFERING

company-id (FK) . .
: pany-id [FK)
product-id (FK) purchased on product-id (FK)

‘ contract-detail

Resolving an N-ary Relatfionship

customer-id (FE)

Because PRODUCTSs must be offered by COMPANYSs, you can create an
associative entity to capture this relationship. As a result, the original “three-
way” relationship to CONTRACT is replaced by two, “two-way” relationships.

By asking a variety of business questions, it is likely that you will find that most
“n-ary” relationships can be broken down into a series of relationships to

associative entities.

6-14 ERwin Methods Guide

Recursive Relationships

Recursive Relationships

An entity can participate in a recursive relationship (also called “fishhook”) in
which the same entity is both the parent and the child. This relationship is an
important one when modeling data originally stored in legacy DBMSs such as
IMS or IDMS that use recursive relationships to implement bill of materials
structures.

For example, a COMPANY can be the “parent of” other COMPANYs. As with all
non-identifying relationships, the key of the parent entity appears in the data
area of the child entity.

COMPANY
company-id

parent-id.company-id [(Fk)

L __parentof

COMmpany-name .— —
|
|
|
|

Recursive Relationship Example

The recursive relationship for COMPANY includes the diamond symbol to
indicate that the foreign key can be NULL, such as when a COMPANY has no
parent. Recursive relationships must be both optional (diamond) and non-
identifying.

The “company-id” attribute is migrated through the recursive relationship, and
appears in the example with the rolename “parent-id.” There are two reasons for
this. One, as a general design rule, an attribute cannot appear twice in the same
entity under the same name. Thus, to complete a recursive relationship, you
must provide a rolename for the migrated attribute.

Two, the attribute “company-id” in the key, which identifies each instance of
COMPANY, is not the same thing as the “company-id” migrated through the
relationship, which identifies the parent COMPANY. You cannot use the same
definition for both attributes, so the migrated attribute must be rolenamed. An
example of possible definitions appears next:

company-id: The unique identifier of a COMPANY.

parent-id: The “company-id” of the parent COMPANY. Not all
COMPANYs have a parent COMPANY.

Refining Model Relationships 6-15

Recursive Relationships

If you create a sample instance table, such as the one following, you can test the
rules in the relationship to ensure that they are valid.

COMPANY
company-id parent-id company-name
C1 NULL Big Monster Company
c2 C1 Smaller Monster Company
C3 C1 Other Smaller Company
4 C2 Big Subsidiary
C5 C2 Small Subsidiary
Co NULL Independent Company

Sample Instance Table for COMPANY

The sample instance table shows that “Big Monster Company” is the parent of
“Smaller Monster Company” and “Other Smaller Company.” “Smaller Monster
Company,” in turn, is the parent of “Big Subsidiary” and “Small Subsidiary.”
“Independent Company” is not the parent of any other company and has no
parent. “Big Monster Company” also has no parent. If you diagram this
information hierarchically, you can validate the information in the table.

Independent Campany Big Monster Company
Cé o1
small Monster Company Cther Small Company
c2 c3
Big Subsidiary ca Small Subsidiary €5

COMPANY Hierarchy

6-16 ERwin Methods Guide

Subtype Relationships

Subtype Relationships

A subtype relationship, also referred to as a generalization category,
generalization hierarchy, or inheritance hierarchy, is a way to group a set of
entities that share common characteristics. For example, you might find during a

modeling effort that several different types of ACCOUNTSs exist in a bank such
as checking, savings, and loan accounts, as shown next.

CHECKING-ACCOUNT

SAVINGS-ACCOUNT

LOAN-ACCOUNT

checking-account-number

savings-account-number

lpan-number

checking-open-date
checking-review-date
checking-balance
available-balance
per-check-charge

savings-open-date
savings-review-date
savings-balance
interest-rate
interest-earned

loan-open-date
loan-review-date
original-loan-amount
[pan-interest-rate
current-loan-balance

Example Account Entities

When you recognize similarities among the different independent entities, you
may be able to collect attributes common to all three types of accounts into a
hierarchical structure.

You can move these common attributes into a higher level entity called the
supertype entity (or generalization entity). Those that are specific to the
individual account types remain in the subtype entities. In the example, you can
create a supertype entity called ACCOUNT to represent the information that is
common across the three types of accounts. The supertype ACCOUNT includes a
primary key of “account-number.”

Three subtype entities, CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and
LOAN-ACCOUNT, are added as dependent entities that are related to
ACCOUNT using a subtype relationship.

The result is a structure like the one shown next:

ACCOUNT

account-type

CHECKING-ACCOUNT][SA\ANGS—ACCOUNT][LDAN-ACCOUNT

Subtype Relationship Example

Refining Model Relationships 6-17

Subtype Relationships

In this example, an ACCOUNT is either a CHECKING ACCOUNT, a SAVINGS-
ACCOUNT, or a LOAN-ACCOUNT. Each subtype entity is an ACCOUNT and
inherits the properties of ACCOUNT. The three different subtype entities of
ACCOUNT are mutually exclusive.

In order to distinguish one type of ACCOUNT from another, you can add the
attribute “account-type” as the subtype discriminator. The subtype discriminator
is an attribute of the category supertype (ACCOUNT) and its value will tell you
which type of ACCOUNT it is.

Once you have established the subtype relationship, you can examine each
attribute in the original model, in turn, to determine if it should remain in the
subtype entities, or move to the supertype. For example, each subtype entity has
an “open-date.” If the definitions of these three kinds of “open-date” are the
same, you can move them to the supertype, and drop them from the subtype
entities.

You need to analyze each attribute in turn to determine if it remains in the
subtype entity or moves to the supertype. In those cases where a single attribute
appears in most, but not all, of the subtype entities, you face a more difficult
decision. You can either leave the attribute with the subtype entities or move the
attribute up to the supertype. If this attribute appears in the supertype, the value
of the attribute in the supertype will be NULL when the attribute is not included
in the corresponding subtype entity.

Which alternative to choose depends on how many of the subtype entities share
the common attribute. If most do, it is good practice, at higher level models, to
move them up. If few subtype entities share the attribute, it is best to leave them
where they are. In lower level models, depending on the purpose, it is often
appropriate to leave the attributes in their subtype entity.

6-18 ERwin Methods Guide

Subtype Relationships

After analysis, the resulting model might appear like the one following.

ACCOUNT
account-id

account-type
account-open-date
account-resvigw-date

(J) account-type
|

I
CHECKING-ACCOUNT SAVINGS-ACCOUNT LOAN-ACCOUNT

account-id (FK) | | account-id (FK) | | account-id (FK) |
checking-halance savings-balance original-loan-date
available-balance interest-rate loan-interest-rate
per-check-charge interest-earned current-loan-halance

Account Subtype Example

When developing a subtype relationship, you must also be aware of any specific
business rules that need to be imposed at the subtype level that are not pertinent
to other subtypes of the supertype. For example, LOAN accounts are deleted
after they reach a zero balance. You would hardly like to delete CHECKING and
SAVINGS accounts under the same conditions.

There may also be relationships that are meaningful to a single subtype and not
to any other subtype in the hierarchy. The LOAN entity needs to be examined,
for example, to ensure that any previous relationships to records of customer
payments or assets are not lost because of a different organizational structure.

Refining Model Relationships 6-19

Subtype Relationships

Complete Versus Incomplete Subtype Structures

In IDEF1X, different symbols are used to specify whether or not the set of
subtype entities in a subtype relationship is fully defined. An incomplete subtype
indicates that the modeler feels there may be other subtype entities that have not
yet been discovered. An incomplete subtype is indicated by a single line at the
bottom of the subtype symbol.

EMPLOYEE
employee-number

emmployee-name
employee-gender
employee-type

employee-type

| |
CONSULTANT FULL-TIME-EMPLOYEE

|emp|oyee—number [FK) | |emp|oyee—number (FK) |
|hDurIy—rate | |fu||—time—emp|oyee—type |

Incomplete Subtype

A complete subtype indicates that the modeler is certain that all possible subtype
entities are included in the subtype structure. For example, a complete subtype

could capture information specific to male and female employees, as shown next.
A complete subtype is indicated by two lines at the bottom of the subtype symbol.

EMPLOYEE
employee-numher

Emmployee-name
employee-gender
employee-type

g }employee—gender

T |
MWMALE-EMPLOYEE FEMALE-EMFLOYEE
| employes-number (FK) | | employes-number (FK) |
| | | maiden-name |

Complete Subtype

When you create a subtype relationship, it is a good rule of thumb to also create
a validation rule for the discriminator. This helps to ensure that all subtypes have
been discovered. For example, a validation rule for “account-type” might
include: C=checking account, S=savings account, L=loans. If the business also
has legacy data with account types of “O,” the validation rule uncovers the
undocumented type and lets you decide if the “O” is a symptom of poor design
in the legacy system or a real account type that you forgot.

6-20 ERwin Methods Guide

Subtype Relationships

Inclusive and Exclusive Relationships

Unlike IDEF1X, IE notation does not distinguish between complete and
incomplete subtype relationships. Instead, IE notation documents whether the
relationship is exclusive or inclusive.

In an exclusive subtype relationship, each instance in the supertype can relate to
one and only one subtype. For example, you might model a business rule that
says an employee can be either a full-time or part-time employee but not both. To
create the model, you would include an EMPLOYEE supertype entity with
FULL-TIME and PART-TIME subtype entities and a discriminator attribute
called “employee-status.” In addition, you would constrain the value of the
discriminator to show that valid values for it include “F” to denote full-time and
“P” to denote part-time.

In an inclusive subtype relationship, each instance in the supertype can relate to
one or more subtypes. In our example, the business rule might now state that an
employee could be full-time, part-time, or both. In this example, you would
constrain the value of the discriminator to show that valid values for it include
“F” to denote full-time, “P” to denote part-time, and “B” to denote both full-time
and part-time.

Note: In IDEF1X notation, you can represent inclusive subtypes by drawing a
separate relationship between the supertype entity and each subtype entity.

Refining Model Relationships 6-21

Subtype Relationships

IDEF1X and IE Subtype Notation

The following chart illustrates subtype notation in IDEF1X and IE.

IDEF1X Subtype Notation

Complete Incomplete IE Subtype
Notation

Subtype. E E
S N

nclusive
ISubtype % %
T -

When to Create a Subtype Relationship

To summarize, there are three reasons to create a subtype relationship:

First, the entities share a common set of attributes. This was the case in our
previous examples.

Second, the entities share a common set of relationships. This has not been
explored but, referring back to the account structure, you could, as needed,
collect any common relationships that the subtype entities had into a single
relationship from the generic parent. For example, if each account type is
related to many CUSTOMERs, you can include a single relationship at the
ACCOUNT level, and eliminate the separate relationships from the
individual subtype entities.

Third, subtype entities should be exposed in a model if the business
demands it (usually for communication or understanding purposes) even if
the subtype entities have no attributes that are different, and even if they
participate in no relationships distinct from other subtype entities.
Remember that one of the major purposes of a model is to assist in
communication of information structures, and if showing subtype entities
assists communication, then show them.

6-22 ERwin Methods Guide

Chapter

Normalization
7

Normalization is the process of making a database design comply with the
design rules outlined by E. F. Codd for relational databases. Following the rules
for normalization, you can control and eliminate data redundancy by removing
all model structures that provide multiple ways to know the same fact.

The goal of normalization is to ensure that there is only one way to know a
“fact.” A useful slogan summarizing this goal is:

ONE FACT IN ONE PLACE!
To provide a basic understanding of the principles of normalization, this chapter

includes a variety of examples of common design problems and normalization
solutions.

Normalization 7-1

Overview of the Normal Forms

Overview of the Normal Forms

The following are formal definitions for the most common normal forms.

Functional Dependence (FD)

Given an entity E, attribute B of E is functionally dependent on attribute A of E if
and only if each value of A in E has associated with it precisely one value of B in
E (at any one time). In other words, A uniquely determines B.

Full Functional Dependence

Given an entity E, an attribute B of E is fully functionally dependent on a set of
attributes A of E if and only if B is functionally dependent on A and not
functionally dependent on any proper subset of A.

First Normal Form (1NF)

An entity E is in 1NF if and only if all underlying values contain atomic values
only. Any repeating groups (that might be found in legacy COBOL data
structures, for example) must be eliminated.

Second Normal Form (2NF)

An entity E is in 2NF if it is in 1INF and every non-key attribute is fully
dependent on the primary key. In other words, there are no partial key
dependencies — dependence is on the entire key K of E and not on a proper
subset of K.

Third Normal Form (3NF)

An entity E is in 3NF if it is in 2NF and no non-key attribute of E is dependent on
another non-key attribute. There are several equivalent ways to express 3NF.
Here is a second: An entity E is in 3NF if it is in 2NF and every non-key attribute
is non-transitively dependent on the primary key. A third and final way is: An
entity E is in 3NF if every attribute in E carries a fact about all of E (2NF) and
only about E (as represented by the entity’s entire key and only by that key). One
way to remember how to implement 3NF is using the following quip: “Each
attribute relies on the key, the whole key, and nothing but the key, so help me
Codd!”

7-2 ERwin Methods Guide

Common Design Problems

Beyond 3NF lie three more normal forms, Boyce-Codd, Fourth and Fifth. In
practice, third normal form is the standard. At the level of the physical database
design, choices are usually made to “denormalize” a structure in favor of
performance for a certain set of transactions. This may introduce redundancy in
the structure, but is often worth it.

Common Design Problems

Many common design problems are a result of violating one of the normal forms.
Common problems include:

m Repeating data groups

m Multiple use of the same attribute

m Multiple occurrences of the same fact
m Conflicting facts

m Derived attributes

m Missing information

These problems are examined individually in the following sections and are
explained using models and sample instance data. When you work on
eliminating design problems, the use of sample instance data can be invaluable
in discovering many normalization errors.

Repeating Data Groups

Repeating data groups can be defined as lists, repeating elements, or internal
structures inside an attribute. This structure, although common in legacy data
structures, violates first normal form and must be eliminated in an RDBMS
model. This is because an RDBMS cannot handle variable-length repeating fields,
because it offers no ability to subscript through arrays of this type. The following
entity contains a repeating data group, “children’s-names.” Repeating data
groups violate first normal form, which basically states that “ An entity is in first
normal form if each of its attributes has a single meaning and not more than one
value for each instance.”

Normalization 7-3

Common Design Problems

Repeating data groups, such as in the following example, present problems when
defining a database to contain the actual data. For example, after designing the
EMPLOYEE entity, you are faced with the questions, “How many children’s
names do you need to record?” “How much space should you leave in each row
in the database for the names?” and “What will you do if you have more names
than remaining space?”

EMPLOYEE
employee-id

employee-name
employee-address
children's names

EMPLOYEE Entity

A sample instance table might clarify the problem:

EMPLOYEE

emp-id emp-name emp-address children's-names
E1 Tom Berkeley Jane

E2 Don Berkeley Tom, Dick, Donna
E3 Bob Princeton -

E4 John New York Lisa

E5 Carol Berkeley -

EMPLOYEE Sample Instance Table

In order to fix the design, it is necessary to somehow remove the list of children’s
names from the EMPLOYEE entity. One way to do this is to add a CHILD table
to contain the information about employee’s children. Once that is done, you can
represent the names of the children as single entries in the CHILD table. In terms
of the physical record structure for employee, this can resolve some of your
questions about space allocation, and prevent wasting space in the record
structure for employees who have no children or, conversely, deciding how
much space to allocate for employees with families.

EMPLOYEE. CHLD
employee-id child-id
employee-name has employee-id (FK)
employee-address -

child-name

7-4 ERwin Methods Guide

Common Design Problems

EMPLOYEE
emp-id emp-name emp-address
E1 Tom Berkeley
E2 Don Berkeley
E3 Bob Princeton
E4 Carol Berkeley
CHILD
emp-id child-id child-name
E2 C1 Tom
E2 C2 Dick
E2 C3 Donna
E4 C1 Lisa

Sample Instance Tables for the EMPLOYEE-CHILD Model

This change makes the first step toward a normalized model; conversion to first
normal form. Both entities now contain only fixed-length fields, which are easy
to understand and program.

Multiple Use of the Same Attribute

It is also a problem when a single attribute can represent one of two facts, and
there is no way to understand which fact it represents. For example, the
following EMPLOYEE entity contains the attribute “start-or-termination-date” in
which you can record this information for an employee.

EMPLOYEE

employee-id

employes-name
employee-address

start-or-termination-date

EMPLOYEE Entity with “start-or-termination-date” Attribute

Normalization 7-5

Common Design Problems

EMPLOYEE

emp-id emp-name emp-address start-or-termination-date
E1 Tom Berkeley Jan 10. 1998

E2 Don Berkeley May 22,1998

E3 Bob Princeton Mar 15, 1997

E4 John New York Sep 30, 1998

E5 Carol Berkeley Apr 22,199

E6 George Pittsburgh Oct 15, 1998

Sample Instance Table Showing “start-or-termination-date”

The problem in the current design is that there is no way to record both a start
date, “the date that the EMPLOYEE started work,” and a termination date, “the
date on which an EMPLOYEE left the company,” in situations where both dates
are known. This is because a single attribute represents two different facts. This
is also a common structure in legacy COBOL systems, but one that often resulted
in maintenance nightmares and misinterpretation of information.

The solution is to allow separate attributes to carry separate facts. Following is an
attempt to correct the problem. It is still not quite right. To know the start date
for an employee, for example, you have to derive what kind of date it is from the
“date-type” attribute. While this may be efficient in terms of physical database
space conservation, it wreaks havoc with query logic.

EMPLOYEE
employee-id

employee-name
employee-address
start-or-termination-date
date-type

In fact, this “solution” actually creates a different type of normalization error,
because “date-type” does not depend on “employee-id” for its existence. This is
also poor design because it solves a technical problem, but does not solve the
underlying business problem - how to store two facts about an employee.

When you analyze the data, you can quickly determine that it is a better solution
to let each attribute carry a separate fact.

7-6 ERwin Methods Guide

Common Design Problems

EMPLOYEE
employee-id

employee-name
employee-address
start-date
termination-date

EMPLOYEE Entity with “start-date” and "“termination-date” Attributes

EMPLOYEE
emp-id emp-name emp-address start-date termination-date
E1 Tom Berkeley Jan 10. —
1998
E2 Don Berkeley May 22, —
1998
E3 Bob Princeton Mar 15, —_
1997
F4 John New York Sep 30, —
1998
E5 Carol Berkeley Apr 22, —
1994
E6 George Pittsburgh Oct 15, Nov 30, 1999
1998

Sample Instance Table Showing “start-date” and “termination-date”

Each of the two previous situations contained a first normal form error. By
changing the structures, an attribute now appears only once in the entity and
carries only a single fact. If you make sure that all entity and attribute names are
singular and that no attribute can carry multiple facts, you have taken a large
step toward assuring that a model is in first normal form.

Normalization 7-7

Common Design Problems

Multiple Occurrences of the Same Fact

One of the goals of a relational database is to maximize data integrity, and
thereby ensure that the information contained in the database is correct and that
facts within the database do not conflict. To maximize data integrity, it is
important to represent each fact in the database once and only once. If a fact
appears in two or more places, errors can begin to creep into the data. The only
exception to this rule (one fact in one place) is in the case of key attributes, which
appear multiple times in a database. The integrity of keys, however, is managed
using referential integrity, which is discussed earlier in this guide.

Multiple occurrences of the same fact often point to a flaw in the original
database design. In the following example, you can see that including
“employee-address” in the CHILD entity has introduced an error in the database
design. If an employee has multiple children, the address must be maintained
separately for each child.

employes-address

CHLD
EMPLOYEE child-id
employee-id has employee-id (FK) ‘
employee-name child-name ‘

Multiple Occurrences of the Same Fact

“Employee-address” is information about the EMPLOYEE, not information
about the CHILD. In fact, this model violates second normal form, which states that
each fact must depend on the entire key of the entity in order to belong to the
entity. The example above is not in second normal form because “employee-
address” does not depend on the entire key of CHILD, only on the “employee-
id” portion, creating a partial key dependency. If you place “employee-address”
back with EMPLOYEE, you can ensure that the model is in at least second
normal form.

7-8 ERwin Methods Guide

Common Design Problems

Conflicting Facts

Conflicting facts can occur for a variety of reasons, including violation of first,
second, or third normal forms. An example of conflicting facts occurring through
a violation of second normal form appears next:

CHLD
child-id
employee-id (FK)

EMPLOYEE
employee-id

has

employee-name
employee-address

child-name
Emp-spouse-address

EMPLOYEE-CHILD Model with Conflicting Facts

EMPLOYEE
emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD
emp-id child-id child-name emp-spouse-address
E1 C1 Jane Berkeley
E2 C1 Tom Berkeley
E2 2 Dick Berkeley
E2 C3 Donna Cleveland
E4 C1 Lisa New York

Sample Instance Tables Showing “Emp-spouse-address”

The attribute named “emp-spouse-address” is included in CHILD, but this
design is a second normal form error. The instance data highlights the error. As
you can see, Don is the parent of Tom, Dick, and Donna but the instance data
shows two different addresses recorded for Don’s spouse. Perhaps Don has two
spouses (one in Berkeley, and one in Cleveland), or Donna has a different mother
from Tom and Dick. Or perhaps Don has one spouse with addresses in both
Berkeley and Cleveland. Which is the correct answer? There is no way to know
from the model as it stands. Business users are the only source that can eliminate
this type of semantic problem, so analysts need to ask the right questions about
the business to uncover the correct design.

Normalization 7-9

Common Design Problems

The problem in the example is that “emp-spouse-address” is a fact about the
EMPLOYEE’s SPOUSE, not about the CHILD. If you leave the structure the way
it is now, then every time Don’s spouse changes address (presumably along with
Don), you will have to update that fact in multiple places; once in each CHILD
instance where Don is the parent. And if you have to do that in multiple places,
what is the chance that you will get it right everywhere? Not too good.

Once it is recognized that “emp-spouse-address” is a fact not about a child, but
about a spouse, you can correct the problem. To capture this information, you
can add a SPOUSE entity to the model.

EMPLOYEE
employee-id

employee-name
employee-address

has | | has
SPOUSE CHLD
spouse-id child-id
emplayee-id (FK) employee-id (FK)

spouse-address child-name
current-or-not

Spouse Entity Added to the EMPLOYEE-CHILD Model

EMPLOYEE
emp-id emp-name emp-address
E1 Tom Berkeley
E2 Don Berkeley
E3 Bob Princeton
E4 Carol Berkeley

Sample Instance Tables

7-10 ERwin Methods Guide

Common Design Problems

CHILD
emp-id child-id child-name
E1l C1 Jane
E2 C1 Tom
E2 C2 Dick
E2 c3 Donna
E4 C1 Lisa

SPOUSE
emp-id spouse-id spouse-address current-spouse
E2 S1 Berkeley Y
E2 S2 Cleveland N
E3 S1 Princeton Y
E4 S1 New York Y
E5 S1 Berkeley Y

Sample Instance Tables Showing the SPOUSE Entity

In breaking out SPOUSE into a separate entity, you can see that the data for the
address of Don’s spouses is correct. Don just has two spouses, one current and
one former.

By making sure that every attribute in an entity carries a fact about that entity,
you can generally be sure that a model is in at least second normal form. Further
transforming a model into third normal form generally reduces the likelihood
that the database will become corrupt; in other words, that it will contain
conflicting information or that required information will be missing.

Normalization 7-11

Common Design Problems

Derived Attributes

Another example of conflicting facts occurs when third normal form is violated.
For example, if you included both a “birth-date” and an “age” attribute as non-
key attributes in the CHILD entity, you violate third normal form. This is
because “age” is functionally dependent on “birth-date.” By knowing “birth-date”
and the date today, you can derive the “age” of the CHILD.

Derived attributes are those that may be computed from other attributes, such as
totals, and therefore need not be stored directly. To be accurate, derived
attributes need to be updated every time their derivation source(s) is updated.
This creates a large overhead in an application that does batch loads or updates,
for example, and puts the responsibility on application designers and coders to
ensure that the updates to derived facts are performed.

A goal of normalization is to ensure that there is only one way to know each fact
recorded in the database. If you know the value of a derived attribute, and you
know the algorithm by which it is derived and the values of the attributes used
by the algorithm, then there are two ways to know the fact (look at the value of
the derived attribute, or derive it from scratch). If you can get an answer two
different ways, it is possible that the two answers will be different.

For example, you can choose to record both the “birth-date” and the “age” for
CHILD. And suppose that the “age” attribute is only changed in the database
during an end of month maintenance job. Then, when you ask the question,
“How old is such and such CHILD?” you can directly access “age” and get an
answer, or you can, at that point, subtract “birth-date” from “today’s-date.” If
you did the subtraction, you would always get the right answer. If “age” has not
been updated recently, it might give you the wrong answer, and there would
always be the potential for conflicting answers.

There are situations, where it makes sense to record derived data in the model,
particularly if the data is expensive to compute. It can also be very useful in
discussing the model with those in the business. Although the theory of
modeling says that you should never include derived data (and you should do so
only sparingly), break the rules when you must. But at least record the fact that
the attribute is derived and state the derivation algorithm.

7-12 ERwin Methods Guide

Common Design Problems

Missing Information

Missing information in a model can sometimes result from efforts to normalize
the data. In the example, adding the SPOUSE entity to the EMPLOYEE-CHILD
model improves the design, but destroys the implicit relationship between the
CHILD entity and the SPOUSE address. It is possible that the reason that “emp-
spouse-address” was stored in the CHILD entity in the first place was to
represent the address of the other parent of the child (which was assumed to be
the spouse). If you need to know the other “parent” of each of the children, then
you must add this information to the CHILD entity.

EMPLOYEE
employee-id

employeg-name
employee-address

has [] has
SPOUSE CHLD
spouse-id child-id
employees-id (FK) has employee-id (FK)
spouse-address o other-parent-id spouse-id (FK)
current-or-not child-name

Replacing Missing Information Using a New Relationship

EMPLOYEE
emp-id emp-name emp-address
E1 Tom Berkeley
E2 Don Berkeley
E3 Bob Princeton
E4 Carol Berkeley
CHILD
emp-id child-id child-name other-parent-id
E1l C1 Jane —
E2 C1 Tom S1
E2 C2 Dick S1
E2 c3 Donna S2
E4 C1 Lisa S1

Sample Instance Tables for EMPLOYEE, CHILD, and SPOUSE

Normalization 7-13

Unification

Unification

SPOUSE
emp-id spouse-id spouse-address current-or-not
E2 S1 Berkeley Y
E2 S2 Cleveland N
E3 S1 Princeton Y
E4 S1 New York Y
E5 S1 Berkeley Y

Sample Instance Tables for EMPLOYEE, CHILD, and SPOUSE

The normalization of this model is not complete, however. In order to complete
it, you must ensure that you can represent all possible relationships between
employees and children, including those in which both parents are employees.

In the following example, the “employee-id” attribute migrates to the CHILD
entity through two relationships: one with EMPLOYEE and the other with
SPOUSE. You might expect that the foreign key attribute would appear twice in
the CHILD entity as a result. However, because the attribute “employee-id” was
already present in the key area of CHILD, it is not repeated in the entity even

though it is part of the key of SPOUSE.

EMPLOYEE
employee-id

employee-name
employes-address

has |] has
SPOUSE CHLD
spouse-id child-id
employes-id (FK) has employee-id (FK)
spouse-address o other-parent-id.spouse-id {FK)
current-or-not child-name

Unification of the "Employee-id"” Foreign Key Attribute

7-14 ERwin Methods Guide

Unification

This combining of two, identical foreign key attributes migrated from the same
base attribute through two or more relationships is called unification. In the
example, “employee-id” was part of the primary key of CHILD (contributed by
the “has” relationship from EMPLOYEE) and was also a non-key attribute of
CHILD (contributed by the “has” relationship from SPOUSE). Because both
foreign key attributes are the identifiers of the same EMPLOYEE, it is desirable
that the attribute appears only once. Unification is implemented automatically by
ERwin when this situation occurs.

The rules that ERwin uses to implement unification include:

1. If the same foreign key is contributed to an entity more than once, without
the assignment of rolenames, all occurrences unify.

2. Unification does not occur if the occurrences of the foreign key are given
different rolenames.

3. If different foreign keys are assigned the same rolename, and these foreign
keys are rolenamed back to the same base attribute, then unification will
occur. If they are not rolenamed back to the same base attribute, there is an
error in the diagram.

4. If any of the foreign keys that unify are part of the primary key of the entity,
the unified attribute will remain as part of the primary key.

5. If none of the foreign keys that unify are part of the primary key, the unified
attribute will not be part of the primary key.

Accordingly, you can override the unification of foreign keys, when necessary,
by assigning rolenames. If you want the same foreign key to appear two or more
times in a child entity, you can add a rolename to each foreign key attribute.

Normalization 7-15

How Much Normalization Is Enough@

How Much Normalization Is Enough?

From a formal normalization perspective (what an algorithm would find solely
from the “shape” of the model, without understanding the meanings of the
entities and attributes) there is nothing wrong with the EMPLOYEE-CHILD-
SPOUSE model. However, just because it is normalized does not mean that the
model is complete or correct. It still may not be able to store all of the information
that is needed or it may store the information inefficiently. With experience, you
can learn to detect and remove additional design flaws even after the “pure
normalization” is finished.

In the earlier EMPLOYEE-CHILD-SPOUSE model example, you have already
discovered that there is no way of recording a CHILD whose parents are both
EMPLOYEEs. Therefore, you can make additional changes to try to
accommodate this type of data.

If you noticed that EMPLOYEE, SPOUSE, and CHILD all represent instances of
people, you may want to try to combine the information into a single table that
represents facts about people and one that represents facts about relationships.
To fix the model, you can eliminate CHILD and SPOUSE, replacing them with
PERSON and PERSON-ASSOCIATION. This lets you record parentage and
marriage through the relationships between two PERSONs captured in the
PERSON-ASSOCIATION entity.

EMPLOYEE
employee-id

person-id (FK)
start-date
termination-date
[]
|Z
isla

|
PERSON| PERSQN-&SSDQIATIDN
, _ as-t-p-id persan-id (Fi<)
person-id associgted to as-wi-p-id person-id (FK)
pEerson-name ascociated with | @ssociation-type
person-address |

EMPLOYEE, PERSON, and PERSON-ASSOCIATION Entities

7-16 ERwin Methods Guide

How Much Normalization Is Enough?

In this structure, you can finally record any number of relationships between two
PERSONSs, as well as a number of relationships you could not record before. For
example, the previous model had not considered “adoption.” The new structure,
however, automatically covers it. To represent “adoption” you can add a new
value to the “person-association-type” validation rule to represent adopted
parentage. You can also add “legal guardian,” “significant other,” or other
relationships between two PERSON:Ss later, if needed.

EMPLOYEE remains an independent entity, because the business chooses to
identify EMPLOYEEs differently from PERSONs. However, EMPLOYEE inherits
the properties of PERSON by virtue of the “is a” relationship back to PERSON.
Notice the “Z” on that relationship and the absence of a diamond. This is a one-
to-zero or one relationship that can sometimes be used in place of a subtype
when the subtype entities require different keys. In this example, a PERSON
either “is an” EMPLOYEE or “is not an” EMPLOYEE.

If you wanted to use the same key for both PERSON and EMPLOYEE, you could
have “encased” the EMPLOYEE entity into PERSON and allowed its attributes to
be NULL whenever the PERSON was not an EMPLOYEE. You still could have
specified that the business wanted to look up “employees” by a separate
identifier, but the business statements would have been a bit different. This
structure is shown next.

PERSOM
pErson-id PERSON-ASSOCIATION
- associgted to as—t—p—id_persnn-iq (FK)
EEE:EE_QSQESS as—w—p-m_i.persnn—ld (FI)
ernp-id (IE1) assaociated with g 3550CIEtON-type
start-date ‘
termination-date

Generalized Employee Model Construct

What this all basically comes down to in the end is that a model may
“normalize,” but still may not be a correct representation of the business. Formal
normalization is important. Verifying that the model means something, perhaps
with sets of sample instance tables as done here, is no less important.

Normalization 7-17

ERwin Support for Normalization

ERwin Support for Normalization

ERwin provides some support for normalization of data models, but does not
currently contain a full normalization algorithm. If you have not used a “real
time” modeling tool before, you will find ERwin’s standard modeling features
quite helpful. They will prevent you from making many normalization errors.

First Normal Form Support

In a model, each entity or attribute is identified by its “name.” ERwin will accept
any name for an object, with the following exceptions:

m ERwin will flag a second use of an entity name (depending on your
preference for unique names).

m ERwin will flag a second use of an attribute name, unless that name is a
rolename. When rolenames are assigned, the same name for an attribute may
be used in different entities.

m ERwin will not let you bring a foreign key into an entity more than once
without unifying the like columns.

By preventing multiple uses of the same name, ERwin is basically prompting
you to put each fact in exactly one place. There may still be second normal form
errors if you place an attribute incorrectly, but no algorithm would find that
without more information than is present in a model.

In the data model, ERwin cannot know that a name you assign to an attribute can
represent a “list” of things. For example, ERwin accepts “children's-names” as an
attribute name in our earlier example. So ERwin does not directly guarantee that

every model is in first normal form.

However, the DBMS schema function of ERwin does not support a data type of
“list.” Because the schema is a representation of the database in a physical
relational system, first normal form errors are also prevented at this level.

7-18 ERwin Methods Guide

ERwin Support for Normalization

Second and Third Normal Form Support

ERwin does not currently know about functional dependencies, but it can help to
prevent second and third normal form errors. For example, if you reconstruct the
examples presented earlier in this chapter, you will find that once “spouse-

address” has been defined as an attribute of SPOUSE, you cannot also define it as
an attribute of CHILD. (Again, depending on your preference for unique names.)

By preventing the multiple occurrence of foreign keys without rolenames, ERwin
is reminding you to think about what the structure represents. If the same
foreign key occurs twice in the same entity, there is a business question to ask:

Are we recording the keys of two separate instances, or do both of the keys represent the
same instance?

When the foreign keys represent different instances, separate rolenames are
needed. If the two foreign keys represent the same instance, then there is very
likely a normalization error somewhere. A foreign key appearing twice in an
entity, without a rolename, is a dead giveaway that there is a redundant
relationship structure in the model. When two foreign keys are assigned the
same rolename, unification occurs.

Normalization 7-19

Chapter

8 Creating a Physical Model

The objective of a physical model is to provide a database administrator with
sufficient information to create an efficient physical database. The physical
model also provides a context for the definition and recording in the data
dictionary of the data elements that form the database, and assists the application
team in choosing a physical structure for the programs that will access the data.
To ensure that all information system needs are met, physical models are often
developed jointly by a team representing the data administration, database
administration, and application development areas.

When deemed appropriate for the development effort, the model can also
provide the basis for comparing the physical database design against the original
business information requirements:

m To demonstrate that the physical database design adequately supports those
requirements.

m To document physical design choices and their implications, such as what is
satisfied, and what is not.

m To identify database extensibility capabilities and constraints.

ERwin provides support for both roles of a physical model: generating the
physical database and documenting physical design against the business
requirements. For example, in a logical / physical model, you can create a
physical model from an ERD, key-based, or fully attributed model simply by
changing the view of the model from “Logical Model” to “Physical Model.” Each
option in the logical model has a corresponding option in the physical model.
Therefore, each entity becomes a relational table, attributes become columns, and
keys become indices.

Once the physical model is created, ERwin can generate all model objects in the
correct syntax for the selected target server; directly to the catalog of the target
server, or indirectly, as a schema DDL script file.

Creating a Physical Model 8-1

Creating a Physical Model

Creating a Physical Model

The following table summarizes the relationship between objects in a logical and
physical model.

Summary of Logical and Physical Model Components

Logical Model Physical Model
Entity Table
Dependent entity FK is part of child table’s PK
Independent entity Parent table or, if child table, FK is
NOT part of child table’s PK
Attribute Column
Logical datatype (text, number, Physical datatype (valid example varies
datetime, blob) depending on the target server
selected)
Domain (logical) Domain (physical)
Primary key Primary key, PK Index
Foreign key Foreign key, FK Index
Alternate key (AK) AK Index—a unique, non-primary
index
Inversion entry (IE) IE Index —a non-unique index created

to search table information by a non-
unique value, such as customer last

name.
Key group Index
Business rule Trigger or stored procedure
Validation rule Constraint
Relationship Relationship implemented using FKs
Identifying FK is part of child table’s PK (above the
line)
Non-Identifying FK is NOT part of child table’s PK
(below the line)
Subtype Denormalized tables
Many-to-many Associative table

8-2 ERwin Methods Guide

Denormalization

Logical Model Physical Model
Referential Integrity INSERT, UPDATE, and DELETE
(cascade, restrict, set Triggers

null, set default)

Cardinality INSERT, UPDATE, and DELETE
Triggers
N/A View or view relationship
N/A Prescript and postscript

Note: Referential integrity is a part of the logical model, because the decision of
how you want a relationship to be maintained is a business decision. Referential
integrity is also a physical model component, because triggers or declarative
statements appear in the schema. ERwin supports referential integrity as a part
of both the logical and physical models.

Denormalization

ERwin also lets you denormalize the structure of the logical model so that you
can build a related physical model that is designed effectively for the target
RDBMS. Features supporting denormalization include:

“Logical only” properties for entities, attributes, key groups, and domains.
You can mark any item in the logical model “logical only” so that it appears
in the logical model, but does not appear in the physical model. For example,
you can use the “logical only” settings to denormalize subtype relationships
or support partial key migration in the physical model.

“Physical only” properties for tables, columns, indexes, and domains. You
can mark any item in the physical model “physical only” so that it appears in
the physical model only. This setting also supports denormalization of the
physical model because it enables the modeler to include tables, columns,
and indexes in the physical model that directly support physical
implementation requirements.

Resolution of many-to-many relationships in a physical model. ERwin
provides support for resolving many-to-many relationships in both the
logical and physical models. If you resolve the many-to-many relationship in
the logical model, ERwin creates the associative entity and lets you add
additional attributes. If you choose to keep the many-to-many relationship in
the logical model, you can still resolve the relationship in the physical model.
ERwin maintains the link between the original logical design and the new
physical design, so the origin of the associative table is documented in the
model.

Creating a Physical Model 8-3

Appendix

A Dependent Entity Types

Classification of Dependent Entities

The following table lists the types of dependent entities that may appear in an IDEF1X

diagram.
Dependent Description Example
Entity Type
Characteristic A characteristic entity may have

represents a group of
attributes which occurs
multiple times for an
entity, and which is not
directly identified by any
other entity. In the
example, HOBBY is said to
be a characteristic of
PERSON.

Associative or Associative and PERSON ADDRESS
Designative designative entities record
) . R may Use used by
multiple relationships
between two or more ADDRESS-USAGE

entities. If the entity
carries only the
relationship information,
it is termed a designative
entity. If it also carries
attributes that further
describe the relationship,
it is called an associative
entity. In the example,
ADDRESS-USAGE is an
associative or designative
entity.

Dependent Entity Types A-1

Classification of Dependent Entities

Dependent
Entity Type

Description

Example

Subtype

Subtype entities are the
dependent entities in a
subtype relationship. In
the example, CHECKING-
ACCOUNT, SAVINGS-
ACCOUNT, and LOAN-
ACCOUNT are subtype
entities.

account-type

[CHECK]NG—ACCOUNT][SA\ANGS-ACCOUNT][LOAN—ACCOUNT]

A-2 ERwin Methods Guide

Glossary

Alternate Key

1) An attribute or attributes that uniquely identify an
instance of an entity.

2) If more than one attribute or group of attributes
satisfies rule 1, the alternate keys are those attributes
or groups of attributes not selected as the primary
key. ERwin will generate a unique index for each
alternate key.

Attribute

An attribute represents a type of characteristic or
property associated with a set of real or abstract
things (people, places, events, and so forth).

Basename
The original name of a rolenamed foreign key.

Binary Relationship

A relationship in which exactly one instance of the
parent is related to zero, one, or more instances of a
child. In IDEF1X, identifying, non-identifying, and
subtype relationships are all binary relationships.

Cardinality
The ratio of instances of a parent to instances of a
child. In IDEF1X, the cardinality of binary
relationships is 1:n, whereby n may be one of the
following;:

m Zero, one, or more (signified by a blank space)

m One or more (signified by the letter P)

m Zero or one (signified by the letter Z)

m Exactly n (where 1 is some number)

Complete Subtype Cluster

If the subtype cluster includes all of the possible
subtypes (every instance of the generic parent is
associated with one subtype), then the subtype cluster
is complete. For example, every EMPLOYEE is either
male or female, and therefore the subtype cluster of
MALE-EMPLOYEE and FEMALE-EMPLOYEE is a
complete subtype cluster.

Dependent Entity

An entity whose instances cannot be uniquely
identified without determining its relationship to
another entity or entities.

Discriminator

The value of an attribute in an instance of the generic
parent determines to which of the possible subtypes
that instance belongs. This attribute is known as the
discriminator. For example, the value in the attribute
Sex in an instance of EMPLOYEE determines to which
particular subtype (MALE-EMPLOYEE or FEMALE-
EMPLOYEE) that instance belongs.

Entity

An entity represents a set of real or abstract things
(people, places, events, and so forth) which have
common attributes or characteristics. Entities may be
either independent, or dependent.

Foreign Key

An attribute that has migrated through a relationship
from a parent entity to a child entity. A foreign key
represents a secondary reference to a single set of
values; the primary reference being the owned
attribute.

Identifying Relationship

A relationship whereby an instance of the child entity
is identified through its association with a parent
entity. The primary key attributes of the parent entity
become primary key attributes of the child.

Incomplete Subtype Cluster

If the subtype cluster does not include all of the
possible subtypes (every instance of the generic
parent is not associated with one subtype), then the
subtype cluster is incomplete. For example, if some
employees are commissioned, a subtype cluster of
SALARIED-EMPLOYEE and PART-TIME
EMPLOYEE would be incomplete.

Glossary—1

Independent Entity
An entity whose instances can be uniquely identified
without determining its relationship to another entity.

Inversion Entry

An attribute or attributes that do not uniquely
identify an instance of an entity, but are often used to
access instances of entities. ERwin will generate a
non-unique index for each inversion entry.

Non-key atiribute

Any attribute that is not part of the entity's primary
key. Non-key attributes may be part of an inversion
entry or alternate key, and may also be foreign keys.

Non-Ildentifying Relationship

A relationship whereby an instance of the child entity
is not identified through its association with a parent

entity. The primary key attributes of the parent entity
become non-key attributes of the child.

Nonspecific Relationship

Both parent-child connection and subtype
relationships are considered to be specific
relationships because they define precisely how
instances of one entity relate to instances of another.
However, in the initial development of a model, it is
often helpful to identify "non-specific relationships"
between two entities. A nonspecific relationship, also
referred to as a "many-to-many relationship," is an
association between two entities in which each
instance of the first entity is associated with zero, one,
or many instances of the second entity and each
instance of the second entity is associated with zero,
one, or many instances of the first entity.

Primary Key

An attribute or attributes that uniquely identify an
instance of an entity. If more than one attribute or
group of attributes can uniquely identify each
instance, the primary key is chosen from this list of
candidates based on its perceived value to the
business as an identifier. Ideally, primary keys should
not change over time and should be as small as
possible. ERwin will generate a unique index for each
primary key.

Referential Integrity

The assertion that the foreign key values in an
instance of a child entity have corresponding values
in a parent entity.

Rolename

A new name for a foreign key. A rolename is used to
indicate that the set of values of the foreign key is a
subset of the set of values of the attribute in the
parent, and performs a specific function (or role) in
the entity.

Schema

The structure of a database. Usually refers to the DDL
(data definition language) script file. DDL consists of
CREATE TABLE, CREATE INDEX, and other
statements.

Specific Relationship

A specific relationship is an association between
entities in which each instance of the parent entity is
associated with zero, one, or many instances of the
child entity, and each instance of the child entity is
associated with zero or one instance of the parent
entity.

Subtype Entity

There are often entities which are specific types of
other entities. For example, a SALARIED EMPLOYEE
is a specific type of EMPLOYEE. Subtype entities are
useful for storing information that only applies to a
specific subtype. They are also useful for expressing
relationships that are only valid for that specific
subtype, such as the fact that a SALARIED
EMPLOYEE will qualify for a certain BENEFIT, while
a PART-TIME-EMPLOYEE will not. In IDEF1X,
subtypes within a subtype cluster are mutually
exclusive.

Subtype Relationship

A subtype relationship (also known as a
categorization relationship) is a relationship between
a subtype entity and its generic parent. A subtype
relationship always relates one instance of a generic
parent with zero or one instance of the subtype.

Glossary-2 ERwin Methods Guide

IndeXx

1NF
definition, 7-2

specifying a domain of values, 5-6
specifying a rolename, 5-7
validation rule in definition, 5-6

2NF
definition, 7-2

3NF
definition, 7-2

A

Base attribute
definition, 5-8

Binary relationship
definition, 6-13

BPwin
process modeling, 2-2

Business rule
capturing in a definition, 5-9

Business term
organizing, 5-5

C

Alias
entity names, 5-2

Alternate key, 4-4

Associative entity, 6-11
definition, A-1

Attribute
avoiding multiple occurrences, 7-8
avoiding multiple usages, 7-5
avoiding synonyms and homonyms, 5-2
definition, 3-3, 5-6
definition using business terms, 5-5
derived, 7-12
in an ERD, 3-2
name, 5-1
rolename, 4-9

Candidate key
definition, 4-2

Cardinality
definition, 6-2
in identifying relationships, 6-2
in non-identifying relationships, 6-4
notation in IDEF1X and IE, 6-2

Cascade
definition, 6-6
example, 6-8

Characteristic entity
definition, A-1

Child entity, 3-4
Complete subtype relationships, 6-20

Index-1

Components E

in an ERD, 3-2

Entity
D assigning a definition, 5-3

associative, 6-11, A-1

avoiding circular definitions, 5-4

Data analyst avoiding synonyms and homonyms, 5-2
role, 2-3 characteristic, A-1

child entity, 3-4

Data model definition, 3-3
use of verb phrases, 3-6 definition conventions, 5-3
Data modeler definition description, 5-3
role, 2-3 definition using business terms, 5-5

dependent, 4-6

Data modeling designative, A-1
analysis of process, 2-2 in an ERD, 3-2
assertion examples, 3-7
benefits, 2-1, 2-8 name, 5-1
definition, 2T1 parent, 3-4
methodologies, 2-1 subtype, 6-17, A-1
sample IDEF1X methodology, 2-4 supertype, 6-17
sessions, 2-3

independent, 4-6

Entity Relationship Diagram

Definiti(?n creating, 3-2
attribute, 5-6 definition, 2-6
capturing business rules, 5-9 objective, 3-1
entity, 5-3 overview, 3-1
rolename, 5-7 sample, 3-2

Denormalization subject areas, 3-1

in the physical model, 8-3 ERD. See also Entity Relationship Diagram

Dependency
existance, 4-6
identification, 4-6

ERwin diagram
components, 3-2

ERwin model

Dependent entity, 4-6 advantages, 2-8

types of, A-1

Exclusive subtype relationships, 6-21
Derived attribute

definition, 7-12 Existence dependency, 4-6
when to use, 7-12

Designative entity

definition, A-1 F
Discriminator
in subtype relationships, 6-18 Facilitator
role, 2-3
Domain
specifying valid attribute values, 5-6 First normal form, 7-3, 7-5
definition, 7-2
Foreign key

assigning referential integrity, 6-5
unification, 5-8

Index-2 ERwin Methods Guide

Foreign key attribute
rolename, 4-9

Full functional dependence, 7-2

Fully attributed model, 2-4
definition, 2-6

G

Generalization category
definition, 6-17

Generalization hierarchy
definition, 6-17

Glossary
creating a business glossary, 5-5

selection example, 4-2
surrogate, 4-3

Key attributes, 4-2

Key based model

definition, 2-6, 4-1
objective, 4-1

Logical model
corresponding physical model constructs, 8-2

definition, 2-6

Logical only property, 8-3

M

IDEF1X
origin, 1-1

Identification dependency, 4-6

Identifying relationship, 4-7
cardinality, 6-2

1IE
origin, 1-1

Inclusive subtype relationships, 6-21
Incomplete subtype relationships, 6-20
Independent entity, 4-6

Inheritance hierarchy
definition, 6-17

Instance
definition, 3-3

Inversion entry, 4-4

K

Manager

role, 2-4

Many-to-many, 3-5, 6-10, 6-11

eliminating, 6-11

Migrating

N

rolename, 4-9

Key
alternate key, 4-4
inversion entry, 4-4
primary, 4-2

Naming

attributes, 5-1
entities, 5-1

N-ary relationship, 6-10

definition, 6-13

Non-identifying relationship, 4-7

cardinality, 6-4

Non-key attribute, 4-2

Normal Forms

full functional dependence, 7-2
summary of six forms, 7-2

Normalization
avoiding design problems, 7-3, 7-5, 7-8, 7-11, 7-12

completing, 7-16
denormalizing in the physical model, 8-3
ERwin support, 7-18

Index—-3

First Normal Form, 7-3, 7-5
Second Normal Form, 7-8
Third Normal Form, 7-11, 7-12

O

One-to-many, 3-4

Parent entity, 3-4

Physical model

corresponding logical model constructs, 8-2

creating, 8-1
definition, 2-7

Physical only property, 8-3

Primary key, 4-2
choosing, 4-2

Process modeling, 2-2

mandatory and optional, 6-4
many-to-many, 3-5, 6-10, 6-11
n-ary, 6-10, 6-13
non-identifying, 4-7
one-to-many, 3-4

reading from child to parent, 3-6
reading from parent to child, 3-6
recursive, 6-10, 6-15

referential integrity, 6-5
subtype, 6-10

subtype (category), 6-17
subtype notation, 6-22

verb phrase, 3-4

Repeating data groups, 7-3
Restrict

definition, 6-6
example, 6-8

Rolename
assigning a definition, 5-7
definition, 4-9
migrating, 4-9

Recursive relationship, 6-10
definition, 6-15

Referential integrity, 6-5
cascade, 6-6
definition, 6-6
example, 6-8, 6-9

notation in an ERwin diagram, 6-7

restrict, 6-6
set default, 6-6
set null, 6-6

Relationship
and dependent entities, 4-6
and independent entities, 4-6
complete subtype, 6-20
definition, 3-4
enforcing cardinality, 6-2
exclusive subtype, 6-21
identifying, 4-7
in an ERD, 3-2
inclusive subtype, 6-21
incomplete subtype, 6-20

Second normal form, 7-8

Second Normal Form
definition, 7-2

Session
planning, 2-3
roles, 2-3

Set default
definition, 6-6

Set null
definition, 6-6
example, 6-9

Subject matter expert
role, 2-4

Subtype entity
definition, A-1

Subtype relationship, 6-10
complete, 6-20
creating, 6-22
definition, 6-17
discriminator, 6-18
exclusive, 6-21

Index—-4 ERwin Methods Guide

inclusive, 6-21
incomplete, 6-20
notation, 6-22
supertypes, 6-17

Supertypes, 6-17

Surrogate key
assigning, 4-3

Third normal form, 7-11, 7-12
definition, 7-2
fully-attributed model, 2-6
key based model, 2-6

Transformation model, 2-4

Transformation Model
creating, 8-1
definition, 2-7

U

Unification
avoiding normalization problems, 7-15
foreign key rolenaming, 5-8

\'4

Validation rule
in attribute definitions, 5-6

Verb phrase, 3-4
example, 3-4
in a data model, 3-6

Index-5

	Methods Guide
	Contents
	Chapter 1: Introduction
	Intended Audience
	Typographical Conventions

	Chapter 2: Information Systems, Databases, and Models
	Benefits of Data Modeling
	Data Modeling Sessions
	Session Roles

	Sample IDEF1X Modeling Methodology
	Logical Models
	The Entity Relationship Diagram
	The Key-Based Model
	The Fully-Attributed (FA) Model

	Physical Models
	The Transformation Model
	The DBMS Model

	Benefits of Data Modeling in ERwin

	Chapter 3: Constructing a Logical Model
	The Entity-Relationship Diagram
	Defining Entities and Attributes
	Logical Relationships
	Many-to-Many Relationships

	Validating the Design of the Logical Model
	Data Model Example

	Chapter 4: Designing a Key-Based Data Model
	Identifying Types of Keys
	Selecting a Primary Key
	Designating Alternate Key Attributes
	Designating Inversion Entry Attributes

	Relationships and Foreign Key Attributes
	Dependent and Independent Entities
	Identifying Relationships
	Non-Identifying Relationships
	Rolenames

	Chapter 5: Naming and Defining Entities and Attributes
	Naming Entities and Attributes
	Synonyms, Homonyms, and Aliases

	Entity Definitions
	Definition References and Circularity
	Constructing a Business Glossary

	Attribute Definitions
	Rolenames
	Definitions and Business Rules

	Chapter 6: Refining Model Relationships
	Relationship Cardinality
	Cardinality in Non-Identifying Relationships

	Referential Integrity
	Reading Referential Integrity Options
	RI, Cardinality, and Identifying Relationships
	RI, Cardinality, and Non-Identifying Relationships

	Additional Relationship Types
	Many-to-Many Relationships
	N-ary Relationships
	Recursive Relationships
	Subtype Relationships
	Complete Versus Incomplete Subtype Structures
	Inclusive and Exclusive Relationships
	When to Create a Subtype Relationship

	Chapter 7: Normalization
	Overview of the Normal Forms
	Functional Dependence (FD)
	Full Functional Dependence
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)

	Common Design Problems
	Repeating Data Groups
	Multiple Use of the Same Attribute
	Multiple Occurrences of the Same Fact
	Conflicting Facts
	Derived Attributes
	Missing Information

	Unification
	How Much Normalization Is Enough?
	ERwin Support for Normalization
	First Normal Form Support
	Second and Third Normal Form Support

	Chapter 8: Creating a Physical Model
	Creating a Physical Model
	Summary of Logical and Physical Model Components

	Denormalization

	Appendix A: Dependent Entity Types
	Classification of Dependent Entities

	Glossary
	Index

