
http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 2 7/30/2007 12:53 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter 7. Modeling Ordered Interactions: Sequence Diagrams
Use cases allow your model to describe what your system must be able to do; classes allow your model to describe
the different types of parts that make up your system's structure. There's one large piece that's missing from this
jigsaw; with use cases and classes alone, you can't yet model how your system is actually going to its job. This is
where interaction diagrams , and specifically sequence diagrams, come into play.

Sequence diagrams are an important member of the group known as interaction diagrams. Interaction diagrams
model important runtime interactions between the parts that make up your system and form part of the logical view
of your model, shown in Figure 7-1.

Figure 7-1. The Logical View of your model contains the abstract descriptions of your system's
parts, including the interactions between those parts

Sequence diagrams are not alone in this group; they work alongside communication diagrams (see Chapter 8) and
timing diagrams (see Chapter 9) to help you accurately model how the parts that make up your system interact.

Sequence diagrams are the most popular of the three interaction diagram types. This
could be because they show the right sorts of information or simply because they tend to
make sense to people new to UML.

Sequence diagrams are all about capturing the order of interactions between parts of your system. Using a
sequence diagram, you can describe which interactions will be triggered when a particular use case is executed and
in what order those interactions will occur. Sequence diagrams show plenty of other information about an
interaction, but their forté is the simple and effective way in which they communicate the order of events within an
interaction.

7.1. Participants in a Sequence Diagram

A sequence diagram is made up of a collection of participants—the parts of your system that interact with each
other during the sequence. Where a participant is placed on a sequence diagram is important. Regardless of where a
participant is placed vertically, participants are always arranged horizontally with no two participants overlapping
each other, as shown in Figure 7-2.

Figure 7-2. At its simplest, a sequence diagram is made up of one or more participants—only one
participant would be a very strange sequence diagram, but it would be perfectly legal UML

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 2 7/30/2007 12:53 PM

Each participant has a corresponding lifeline running down the page. A participant's lifeline simply states that the
part exists at that point in the sequence and is only really interesting when a part is created and/or deleted during a
sequence (see "Participant Creation and Destruction Messages" later in this chapter).

7.1.1. Participant Names

Participants on a sequence diagram can be named in number of different ways, picking elements from the standard
format:

name [selector] : class_name ref decomposition

The elements of the format that you pick to use for a particular participant will depend on the information known
about a participant at a given time, as explained in Table 7-1.

Table 7-1. How to understand the components of a participant's name

Example participant name Description

admin A part is named admin, but at this point in time the part has not been assigned a
class.

: ContentManagementSystem The class of the participant is ContentManagementSystem, but the part currently
does not have its own name.

admin : Administrator There is a part that has a name of admin and is of the class Administrator.

eventHandlers [2] :
EventHandler

There is a part that is accessed within an array at element 2, and it is of the
class EventHandler.

: ContentManagementSystem ref
cmsInteraction

The participant is of the class ContentManagementSystem, and there is another
interaction diagram called cmsInteraction that shows how the participant works
internally (see "A Brief Overview of UML 2.0's Fragment Types," later in this
chapter).

The format used when creating names for your participants is totally up to you—or maybe your company's style
guide. In this book, we lowercase the first word in the participant name to make sure that there is as little confusion
as possible with the name of a class. However, this is just our convention—similar to the conventions used when
naming objects and classes in Java—and is not something specified by UML.

What Happened to Objects?

In UML 1.x, participants on an interaction diagram were usually software objects in the traditional
object-oriented programming sense. Each object was an instance of a class, and the object name was
underlined to indicate this. Because UML 2.0 is more of a general system modeling language, it makes
much more sense to think of it in terms of system parts interacting with each other rather than
software objects. This is why we've used the term "participant" to describe a part that is involved in
the interactions on a sequence diagram. A participant could still be a software object, a la UML 1.x,
but it could equally be any other part of the system in keeping with the spirit of UML 2.0.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 1 7/30/2007 12:53 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.2. Time

A sequence diagram describes the order in which the interactions take place, so time is an important factor. How
time relates to a sequence diagram is shown in Figure 7-3.

Figure 7-3. Time runs down the page on a sequence diagram in keeping with the participant lifeline

Time on a sequence diagram starts at the top of the page, just beneath the topmost participant heading, and then
progresses down the page. The order that interactions are placed down the page on a sequence diagram indicates
the order in which those interactions will take place in time.

Time on a sequence diagram is all about ordering, not duration. Although the time at which an interaction occurs is
indicated on a sequence diagram by where it is placed vertically on the diagram, how much of the vertical space the
interaction takes up has nothing to do with the duration of time that the interaction will take. Sequence diagrams
are first about the ordering of the interactions between participants; more detailed timing information is better
shown on timing diagrams (see Chapter 9).

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 2 7/30/2007 12:54 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.3. Events, Signals, and Messages

The smallest part of an interaction is an event. An event is any point in an interaction where something occurs, as
shown on Figure 7-4.

Figure 7-4. Probably the most common examples of events are when a message or signal is sent or
received

Events are the building blocks for signals and messages. Signals and messages are really different names for the
same concept: a signal is the terminology often used by system designers, while software designers often prefer
messages.

In terms of sequence diagrams, signals and messages act and look the same, so we'll stick to using the term
"messages" in this book.

An interaction in a sequence diagram occurs when one participant decides to send a message to another participant,
as shown in Figure 7-5.

Figure 7-5. Interactions on a sequence diagram are shown as messages between participants

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 2 7/30/2007 12:54 PM

Messages on a sequence diagram are specified using an arrow from the participant that wants to pass the message,
the Message Caller, to the participant that is to receive the message, the Message Receiver. Messages can flow in
whatever direction makes sense for the required interaction—from left to right, right to left, or even back to the
Message Caller itself. Think of a message as an event that is passed from a Message Caller to get the Message
Receiver to do something.

7.3.1. Message Signatures

A message arrow comes with a description, or signature. The format for a message signature is:

attribute = signal_or_message_name (arguments) : return_type

You can specify any number of different arguments on a message, each separated using a comma. The format of an
argument is:

<name>:<class>

The elements of the format that you use for a particular message will depend on the information known about a
particular message at any given time, as explained in Table 7-2.

Table 7-2. How to understand the components of a message's signature

Example message signature Description

doSomething() The message's name is doSomething, but no further information is known
about it.

doSomething(number1 : Number,
number2 : Number)

The message's name is doSomething, and it takes two arguments, number1
and number2, which are both of class Number.

doSomething() : ReturnClass The message's name is doSomething; it takes no arguments and returns an
object of class ReturnClass.

myVar = doSomething() :
ReturnClass

The message's name is doSomething; it takes no arguments, and it returns
an object of class ReturnClass that is assigned to the myVar attribute of the
message caller.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 1 7/30/2007 12:54 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.4. Activation Bars

When a message is passed to a participant it triggers, or invokes, the receiving participant into doing something; at
this point, the receiving participant is said to be active. To show that a participant is active, i.e., doing something,
you can use an activation bar, as shown in Figure 7-6.

Figure 7-6. Activation bars show that a participant is busy doing something for a period of time

An activation bar can be shown on the sending and receiving ends of a message. It indicates that the sending
participant is busy while it sends the message and the receiving participant is busy after the message has been
received

Activation bars are optional—they can clutter up a diagram.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 1 7/30/2007 12:55 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.5. Nested Messages

When a message from one participant results in one or more messages being sent by the receiving participant,
those resulting messages are said to be nested within the triggering message, as shown in Figure 7-7.

Figure 7-7. Two nested messages are invoked when an initial message is received

In Figure 7-7, participant1 sends initialMessage(..) to participant2. When participant2 receives
initialMessage(..), participant2 becomes active and sends two nested messages to participant3. You can
have any number of nested messages inside a triggering message and any number of levels of nested messages on
a sequence diagram.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 5 7/30/2007 12:55 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.6. Message Arrows

The type of arrowhead that is on a message is also important when understanding what type of message is being
passed. For example, the Message Caller may want to wait for a message to return before carrying on with its
work—a synchronous message. Or it may wish to just send the message to the Message Receiver without waiting
for any return as a form of "fire and forget" message—an asynchronous message.

Sequence diagrams need to show these different types of message using various message arrows , as shown in
Figure 7-8.

To explain how the different types of messages work, let's look at some simple examples where the participants are
actually software objects implemented in Java.

Figure 7-8. There are five main types of message arrow for use on sequence diagram, and each has
its own meaning

7.6.1. Synchronous Messages

As mentioned before, a synchronous message is invoked when the Message Caller waits for the Message Receiver to
return from the message invocation, as shown in Figure 7-9.

Figure 7-9. The messageCaller participant makes a single synchronous message invocation on the
messageReceiver participant

The interaction shown in Figure 7-9 is implemented in Java using nothing more than a simple method invocation, as
shown in Example 7-1.

Example 7-1. The messageCaller object makes a regular Java method call to the foo() method on
the messageReceiver object and then waits for the messageReceiver.foo() method to return

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 5 7/30/2007 12:55 PM

before carrying on with any further steps in the interaction

public class MessageReceiver
{
 public void foo()
 {
 // Do something inside foo.
 }
}

public class MessageCaller
{
 private MessageReceiver messageReceiver;

 // Other Methods and Attributes of the class are declared here

 // The messageRecevier attribute is initialized elsewhere in
 // the class.

 public doSomething(String[] args)
 {

// The MessageCaller invokes the foo() method

 this.messageReceiver.foo(); // then waits for the method to return

 // before carrying on here with the rest of its work
 }
}

7.6.2. Asynchronous Messages

It would be great if all the interactions in your system happened one after the other in a nice simple order. Each
participant would pass a message to another participant and then calmly wait for the message to return before
carrying on. Unfortunately, that's not how most systems work. Interactions can happen at the same point in time,
and sometimes you will want to initiate a collection of interactions all at the same time and not wait for them to
return at all.

For example, say you are designing a piece of software with a user interface that supports the editing and printing
of a set of documents. Your application offers a button for the user to print a document. Printing could take some
time, so you want to show that after the print button is pressed and the document is printing, the user can go ahead
and work with other things in the application. The regular synchronous message arrow is not sufficient to show
these types of interactions. You need a new type of message arrow: the asynchronous message arrow.

An asynchronous message is invoked by a Message Caller on a Message Receiver, but the Message Caller does not
wait for the message invocation to return before carrying on with the rest of the interaction's steps. This means that
the Message Caller will invoke a message on the Message Receiver and the Message Caller will be busy invoking
further messages before the original message returns, as shown in Figure 7-10.

A common way of implementing asynchronous messaging in Java is to use threads, as shown in Example 7-2.

Figure 7-10. While the foo() message is being worked on by the messageReceiver object, the
messageCaller object has carried on with the interaction by executing further synchronous

messages on another object

If you're not too familiar with how threads work in Java, check out Java in a Nutshell , Fifth Edition (O'Reilly) or Java
Threads (O'Reilly). See "Applying Asynchronous Messages" later in this chapter for a practical example of
asynchronous messages.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 5 7/30/2007 12:55 PM

Example 7-2. The operation1() asynchronous message invokes an internal thread on the message
receiver that in turn spurs the message, immediately returning the flow of execution to the
messageCaller

public class MessageReceiver implements Runable {

 public void operation1() {
// Receive the message and trigger off the thread

 Thread fooWorker = new Thread(this);
 fooWorker.start(); // This call starts a new thread, calling the run()
 // method below

 // As soon as the thread has been started, the call to foo() returns.

 }

 public void run() {
// This is where the work for the foo() message invocation will

 // be executed.
 }
}

public class MessageCaller
{
 private MessageReceiver messageReceiver;

 // Other Methods and Attributes of the class are declared here

 // The messageRecevier attribute is initialized elsewhere in
 // the class.

 public void doSomething(String[] args) {
// The MessageCaller invokes the operation1() operation

 this.messageReceiver.operation1();

 // then immediately carries on with the rest of its work
 }
}

7.6.3. The Return Message

The return message is an optional piece of notation that you can use at the end of an activation bar to show that the
control flow of the activation returns to the participant that passed the original message. In code, a return arrow is
similar to reaching the end of a method or explicitly calling a return statement.

You don't have to use return messages —sometimes they can really make your sequence diagram too busy and
confusing. You don't have to clutter up your sequence diagrams with a return arrow for every activation bar since
there is an implied return arrow on any activation bars that are invoked using a synchronous message.

Although a message will often be passed between two different participants, it is totally
normal for a participant to pass a message to itself. Messages from an object to itself are
a good way of splitting up a large activation into smaller and more manageable pieces
and, in terms of software, can be thought of as being very similar to making a method
call to the this reference in Java and C#.

7.6.4. Participant Creation and Destruction Messages

Participants do not necessarily live for the entire duration of a sequence diagram's interaction. Participants can be
created and destroyed according to the messages that are being passed, as shown in Figure 7-11.

Figure 7-11. Both participant2 and participant3 are created throughout the course of this sequence
diagram

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 5 7/30/2007 12:55 PM

To show that a participant is created, you can either simply pass a create(..) message to the participant's lifeline
or use the dropped participant box notation where it is absolutely clear that the participant does not exist before the
create call is invoked. Participant deletion is shown by the ending of the participant's lifeline with the deletion cross.

Software participant creation in Java and C# is implemented using the new keyword, as shown in Example 7-3.

Example 7-3. The MessageCaller creates a new MessageReceiver object simply by using the new
keyword

public class MessageReceiver {
 // Attributes and Methods of the MessageReceiver class
}

public class MessageCaller {

 // Other Methods and Attributes of the class are declared here

 public void doSomething() {
// The MessageReceiver object is created

 MessageReceiver messageReceiver = new MessageReceiver();
 }
}

With some implementation languages, such as Java, you will not have an explicit destroy method , so it doesn't
make sense to show one on your sequence diagrams. Example 7-3 is one such case where the messageReceiver
object will be flagged for destruction when the doSomething() method completes its execution. However, no
additional messages have to be passed to the messageReceiver to make it destroy itself since this is all handled
implicitly by the Java garbage collector.

In these cases, where another factor such as the garbage collector is involved, you can either leave the object as
alive but unused or imply that it is no longer needed by using the destruction cross without an associated destroy
method, as shown in Figure 7-12.

Figure 7-12. Using an explicit destroy message or implying that a participant has been discarded
using just a destruction cross

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 5 7/30/2007 12:55 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.7. Bringing a Use Case to Life with a Sequence Diagram

It's time to take a closer look at a sequence. Specifically, let's look at a sequence diagram that is going to model the
interactions that need to occur to make the Create a new Regular Blog Account use case happen.

Figure 7-13 should look familiar; it is just a quick reminder of what the Create a new Regular Blog Account use
case looks like (see Chapter 2).

Figure 7-13. The Create a new Regular Blog Account use case diagram

Briefly, the Create a new Regular Blog Account use case is a special case of the Create a new Blog Account
use case. It also includes all of the steps provided by the Check Identity use case and may optionally execute the
steps provided by the Record Application Failure use case, if the application for a new account is denied. Figure
7-13 is a pretty busy use case diagram, so feel free to jump back to Chapter 2 to remind yourself of what is going
on.

Supporting the Dropped Title Box Technique

It is a sad fact that many standard UML tools do not support the dropped title box technique for
showing participant creation or the cross notation for participant destruction. For example, you will
often find that your tool does not allow you to place the participant's title box anywhere else but at
the top of the diagram. In these cases, the best approach is to show that the creation or deletion
message invokes the object being created and to rely on the reader of the diagram to realize that you
mean that the participant is being created (a note to this effect is often helpful too). Unfortunately,
this approach is not the best use of UML, but sometimes it is all you can get the tool to do.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

7.7.1. A Top-Level Sequence Diagram

Before you can specify what types of interaction are going to occur when a use case executes, you need a more
detailed description of what the use case does. If you've already completed a use case description, you already have
a good reference for this detailed information.

Table 7-3 shows the steps that occur in the Create a new Regular Blog Account use case according to its
detailed description.

Table 7-3. Most of the detailed information that you will need to start constructing a sequence
diagram for a use case should already be available as the Main Flow within the use case's

description

Main Flow Step Action

 1 The Administrator asks the system to create a new blog account.

 2 The Administrator selects the regular blog account type.

 3 The Administrator enters the author's details.

 4 The author's details are checked using the Author Credentials Database.

 5 The new regular blog account is created.

 6 A summary of the new blog account's details are emailed to the author.

Table 7-3 actually shows all of the steps involved in the Create a new Regular Blog Account use case, including
any steps that it has inherited from Create a new Blog Account or reused from Check Identity. This has been
done just so you can easily see all of the Main Flow steps in one place.

In practice, you would probably just look up all three use case descriptions separately without actually going to the
bother of actually merging them.

Table 7-3 only shows the Main Flow—that is the steps that would occur without worrying about any extensions—but
this is a good enough starting point for creating a top-level sequence diagram, as shown in Figure 7-14.

Figure 7-14. This sequence diagram shows the actors that interact with your system and your
system is shown simply as a single part in the sequence

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

Figure 7-14 focuses on the participants and messages that are involved in the use case.
The same use case was modeled in Chapter 3 as an activity diagram, which focused on
the processes involved rather than the particpants.

7.7.2. Breaking an Interaction into Separate Participants

At this point, Figure 7-14 shows only the interactions that must happen between the external actors and your
system because that is the level at which the use case description's steps were written. On the sequence diagram,
your system is represented as a single participant, the ContentManagementSystem; however, unless you intend on
implementing your content management system as a single monolithic piece of code (generally not a good idea!),
it's time to break apart ContentManagementSystem to expose the pieces that go inside, as shown in Figure 7-15.

Figure 7-15. Adding more detail about the internals of your system

Sequence diagrams can get much more complicated by simply adding a couple of extra participants and some more
detailed interactions. In Figure 7-15, the original sequence diagram has been refined so that the single
ContentManagementSystem participant has been removed and in its place, more detail has been added showing the
actual participants that will be involved.

Work on sequence diagrams invariably goes on throughout the life of your system's model, and even getting the
right participants and interactions in a detailed sequence diagram at the beginning can be hard work. Keeping your
sequence diagrams up to date is also a challenge (see "Managing Complex Interactions with Sequence Fragments"
later in this chapter); therefore, expect to spend some time working with your sequence diagrams until you get
things right.

7.7.3. Applying Participant Creation

Something critical is missing from the sequence diagram shown in Figure 7-15. The title of the use case in which the
sequence diagram is operating is Create a new Regular Blog Account, but where is the actual creation of the
blog account? Figure 7-16 adds the missing pieces to the model to show the actual creation of a regular blog
account.

Figure 7-16. Showing the lifelines of your sequence diagram's participants

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

Participant lifelines are particularly useful when showing that a participant has been created. In Figure 7-16, the
AuthorDetails and RegularBlogAccount participants are not in existence when the sequence diagram begins but
they are created during its execution.

The AuthorDetails and newAccount:RegularBlogAccount participants are created by corresponding create
messages. Each create message connects directly into the title box for the participant being created, passing any
information needed when creating the new participant. By dropping the participant's title box to the point where the
create message is actually invoked, the diagram can clearly show the point where the participant's lifeline begins.

7.7.4. Applying Participant Deletion

Let's say that the authorDetails:AuthorDetails participant is no longer required once the
newAccount:RegularBlogAccount has been created. To show that the authorDetails:AuthorDetails participant is
discarded at this point, you can use an explicit destroy message connected to the destruction cross, as shown in
Figure 7-17.

7.7.5. Applying Asynchronous Messages

So far, all of the messages on our example sequence diagram have been synchronous; they are executed one after
the other in order, and nothing happens concurrently. However, there is at least one message in the example
sequence that is a great candidate for being an asynchronous message, as shown in Figure 7-18.

Figure 7-17. Showing that a participant is discarded using the destruction cross

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

Figure 7-18. The clickSubmit() message will currently produce some irregular behavior when the
admin creates a new account

In Figure 7-18, when the Administrator clicks on the submit button the system freezes, until the new blog account
has been created. It would be useful to show that the user interface allows the Administrator to carry on with
other tasks while the content management system creates the new account. What we need is for the clickSubmit(
) message to be asynchronous.

Converting the clickSubmit() from a synchronous to an asynchronous message means that the sequence
diagram now shows that when the new regular blog account information is submitted, the user interface will not lock
and wait for the new account to be created. Instead, the user interface allows the Administrator actor to continue
working with the system.

For the Administrator to receive feedback as to whether the new blog account has been created, the simple return
arrow has to be replaced with a new accountCreationNotification() asynchronous message since asynchronous

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 6 7/30/2007 12:56 PM

messages do not have return values.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 4 7/30/2007 12:57 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.8. Managing Complex Interactions with Sequence Fragments

Most of what you've seen in this chapter will have been pretty familiar to anyone who has used sequence diagrams
in UML 1.x. But now it's time for something completely different.

In the bad old days of pre-UML 2.0, sequence diagrams quickly became huge and messy, and contained far too
much detail to be easily understood or maintained. There were no built-in, standard ways to show loops and
alternative flows, so you had to "grow your own" solutions. This tended to contribute to the size and complexity of
the sequence diagrams rather than helping to manage it.

Something new was needed to help the modeler work with the detail that a sequence diagram needed to capture,
allowing her to create organized and structured sequence diagrams that showed complex interactions such as loops
and alternate flows. The answer from the UML 2.0 designers was the sequence fragment.

A sequence fragment is represented as a box that encloses a portion of the interactions within a sequence diagram,
as shown in Figure 7-19.

A sequence fragment's box overlaps the region of the sequence diagram where the fragment's interactions take
place. A fragment box can contain any number of interactions and, for large complex interactions, further nested
fragments as well. The top left corner of the fragment box contains an operator. The fragment operator indicates
which type of fragment this is.

Figure 7-19. A sequence fragment located as part of a larger sequence diagram, with notes to
indicate the fragment box, any parameters, and its operator

In Figure 7-19, the operator is opt, which means that this is an optional fragment. All the interactions contained

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 4 7/30/2007 12:57 PM

within the fragment box will be executed according to the result of the fragments guard condition parameter.

Some fragment types do not need additional parameters as part of their specification, such as the ref fragment
type discussed in the next section, but the guard condition parameter is needed by the opt fragment type to make a
decision as to whether it should execute its interactions or not. In the case of the opt fragment type, the
interactions that the fragment contains will be executed only if the associated guard condition logic evaluates to
true.

7.8.1. Using a Sequence Fragment: The ref Fragment

The ref type of sequence fragment finally alleviates some of the maintenance nightmare presented by the huge
sequence diagrams that are often created for complex systems. In Figure 7-20, the ref fragment represents a piece
of a larger sequence diagram.

The interactions by which the Administrator actor selects a blog account type for creation are now contained within
the referenced sequence fragment. Figure 7-21 shows how the referenced fragment can be expressed on a separate
sequence diagram.

Figure 7-20. Capturing the interactions used to select an account type within a ref sequence
fragment

Figure 7-21. A referenced sequence diagram that contains the new account selection interactions

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 4 7/30/2007 12:57 PM

Along with managing the sheer size of large sequence diagrams, the ref fragment also presents an opportunity to
reuse a set of common interactions. Several ref fragment boxes can reference the same set of interactions, thereby
reusing the interactions in multiple places.

The ref fragment type works in a very similar manner to the <<include>> use case
relationship. See Chapter 2 for more about the <<include>> use case relationship.

7.8.2. A Brief Overview of UML 2.0's Fragment Types

UML 2.0 contains a broad set of different fragment types that you can apply to your sequence diagrams to make
them more expressive, as shown in Table 7-4.

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 4 7/30/2007 12:57 PM

Table 7-4. The fragment family and explanations why each type might be useful when creating
sequence diagrams

Type Parameters Why is it useful?

ref None Represents an interaction that is defined elsewhere in the model. Helps you manage a
large diagram by splitting, and potentially reusing, a collection of interactions. Similar
to the reuse modeled when the <<include>> use case relationship is applied.

assert None Specifies that the interactions contained within the fragment box must occur exactly
as they are indicated; otherwise the fragment is declared invalid and an exception
should be raised. Works in a similar fashion to the assert statement in Java. Useful
when specifying that every step in an interaction must occur successfully, i.e., when
modeling a transaction.

loop min times,

max times,

[guard_condition]

Loops through the interactions contained within the fragment a specified number of
times until the guard condition is evaluated to false. Very similar to the Java and C#
for(..) loop. Useful when you are trying execute a set of interactions a specific
number of times.

break None If the interactions contained within the break fragment occur, then any enclosing
interaction, most commonly a loop fragment , should be exited. Similar to the break
statement in Java and C#.

alt [guard_condition1]
...

[guard_condition2]
...

[else]

Depending on which guard condition evaluates to true first, the corresponding
sub-collection of interactions will be executed. Helps you specify that a set of
interactions will be executed only under certain conditions. Similar to an if(..) else
statement in code.

opt [guard_condition] The interactions contained within this fragment will execute only if the guard condition
evaluates to true. Similar to a simple if(..) statement in code with no corresponding
else. Especially useful when showing steps that have been reused from another use
case's sequence diagrams, where <<extend>> is the use case relationship.

neg None Declares that the interactions inside this fragment are not to be executed, ever.
Helpful if you are just trying to mark a collection of interactions as not executed until
you're sure that those interactions can be removed. Most useful if you happen to be
lucky enough to be using an Executable UML tool where your sequence diagrams are
actually being run. Also can be helpful to show that something cannot be done, e.g.,
when you want to show that a participant cannot call read() on a socket after
close().Works in a similar fashion to commenting out some method calls in code.

par None Specifies that interactions within this fragment can happily execute in parallel. This is
similar to saying that there is no need for any thread-safe locking required within a
set of interactions.

region None Interactions within this type of fragment are said to be part of a critical region. A
critical region is typically an area where a shared participant is updated. Combined
with parallel interactions, specified using the par fragment type, you can model where
interactions are not required to be thread- or process-safe (par fragment) and where
locks are required to prevent parallel interactions interleaving (region fragment). Has
similarities synchronized blocks and object locks in Java.

Sequence fragments make it easier to create and maintain accurate sequence diagrams. However, it's worth
remembering that no fragment is an island; you can mix and match any number of fragments to accurately model
the interactions on a sequence diagram. Be wary if your diagrams become huge and unwieldy even when you are
using fragments, since you might simply be trying to model too much in one sequence.

We've given you a brief overview of sequence diagram fragments here. All the different sequence diagram fragment
types are a big subject in their own right and are a little beyond the scope of this book. For a more in-depth look at
the different types of sequence diagram fragments, see UML 2.0 in a Nutshell (O'Reilly).

http://acmsel.safaribooksonline.com/print?xmlid=0596009828/learnuml

of 1 7/30/2007 12:57 PM

User name: VLADIMIR BLAGOJEVIC
Book: Learning UML 2.0

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

7.9. What's Next?

Sequence diagrams are closely related to communication diagrams. So closely, in fact, that many modelers often
don't know when to use sequence versus communication diagrams. Chapter 8 describes communication diagrams
and concludes with a comparison between the two, providing some tips about when to use which diagram type.

Sequence and communication diagrams are both interaction diagrams; timing diagrams are yet another type of
interaction diagram. Timing diagrams specialize at showing time constraints involved with interactions, which is
especially useful for real-time systems. Timing diagrams are covered in Chapter 9.

If your sequence diagram is getting cluttered with too many messages, step back and look at interaction diagrams
on a higher level with interaction overview diagrams. Interaction overview diagrams model the big picture
perspective on interactions that occur within your system. Interaction overview diagrams are described in Chapter
10.

