Figure 7-20. Capturing the interactions used to select an account type within a ref sequence

fragment
LM il anntraller - LBl SRR
admin - Admissirator RecsmnitCoeaticall Crvatebewheosmniiontroller acd - Author(pedentishDR | | es:

£2)

Select Adcoami Type

engerAutharDetaits (author : AutherDetals)
Y

didSubmin) | uu:!Nmktqua'lshgk:uml!Mhnl!]e'.i'ja AutherDetais)
=)

checkuthes Detalislautharerals: AuthorDetai)

opt] [checked = true]
<<meale(authorDetsill=>
newhecoumt |
FegularBloghco

emgilBlogOetaibdnewhocount : RequiarBloghoooust)

» sendimaii{email : Email}

siopumtCeeatedibatification]) o = _J

Figure 7-21. A referenced sequence diagram that contains the new account selection interactions
sd Select Blog Account Type J

<<actor>> ui:
admin : Administrator AccountCreationUl

createMewBlogAccount()

"

-
-

selectBlogAccountType(type)

Figure 10-31. Example of a decomposition diagram

sd Purchase ltem
- PaymeniSubsysiam
Customer : Usar OrderProcassingControllar ‘ ’ ref
PaymeniSubsystem Pay ShippingService
_ ment Authorization
completelrder()
venfyPayment{creditCardinfo)
-
truse
: shipOrder()
~ confirmation # =

sd PaymentSubsystem_Payment Authorization ,.l

(PaymeniSubsysiem | : VeriicaionSequest i s :i‘
verifyPayment{creditCardinfo)
K] | wcreaten
.f ==
! verityCardHolderverificationRequest)
[-
true
I .
[

i i e s
This sequance diagram has two gates, one to |
match the incoming verifyPayment message |
I and one to indicate the return value, '

Table 7-4. The fragment family and explanations why each type might be useful when creating

Type Parameters

raf Mone
assart Mons
lcop min timas,

max times,

[guard_condition]

break Mone

alt [guard_conditionl]
[guard_condition2]

[else]

opt [guard_condition]

neg Mone

par Mone

region Mons

sequence diagrams
Why is it useful?

Fepressnts an interaction that is defined slsewhers in the model. Halps you manage a
large diagram by splitting, and potentially reusing, a collection of interactions. Similar
to the reuse modeled when the <<inzludes> use case ralationship iz applisd.

Specifies that the interactions contained within the fragment box must occur exactly
as they are indicated; otherwise the fragment is declared invalid and an exception
should be raised. Works in a similar fashion to the a==ext statement in Java. Useful
when specifying that every step in an interaction must occur successfully, i.e., when
maodeling a transaction.

Loops through the interactions contained within the fragment a specified number of
times until the guard condition is evaluated to false. Very similar to the Java and C2
fori..} loop. Useful whean you are trying execute a set of interacticns a specific
number of times.,

If the interactions contained within the break fragment accur, then any enclosing
interaction, mest commenly a loop fragment , should be exited, Similar to the sz=ak
statement in Java and C#.

Depending an which guard condition evaluates to true first, the corresponding
sub-collection of interactions will be executed. Helps you specify that a set of
interactions will be exacuted only under certain conditions. Similar to an ig(..) 21==
statement in code.

The interactions contained within this fragment will execute anly if the guard condition
evaluates to true. Similar to a simple 2£(. .} statement in cods with no corresponding
=1=e, Especially useful whan showing steps that have been reused from another use
case's sequence diagrams, where c<arrand:> is the use case relationship.

Declares that the interactions inside this fragment are not to be executed, sver.
Helpful if you are just trying to mark a collection of intaractions as not executed until
you're sure that those interactions can be removed. Maost useful if you happen to be
lucky encugh to be using an Executable UML taol where your seguence diagrams ars
actually being run. Alsc can be helpful to show that zomething cannct be done, 2.9..
when you want to show that a participant cannot call z=ad(; on a sockst after
clo=ei }.Works in a similar fashion to commenting out some method calls in cede.

Specifies that interactions within this fragment can happily executs in parallel. This is
similar to saying that thers is ne need for any thread-safe locking required within a
set of interactions.

Interactions within this type of fragment are said to be part of a critical region. A
critical region is typically an area whers a shared participant is updated. Combined
with parallel interactions, specifiesd using the par fragment type, you can modsal whare
interactions are not required to be thread- or process-safe (par fragment) and whars
locks are required to prevent parallel interactions interleaving (region fragment }. Has
similarities synchronized blecks and object locks in Java.

	SequenceDiagram1.jpg
	SequenceDiagram2.jpg
	SequenceDiagram3.jpg

