
Strategies for the Conceptual Design of
Federated Information Systems

Susanne Busse, Ralf-Detlef Kutsche, Ulf Leser

TU Berlin, Computergestützte Informationssysteme CIS, EN7,
Einsteinufer 17, D-10587 Berlin, Germany
{sbusse, rkutsche, leser}@cs.tu-berlin.de

Abstract. We analyse two basic strategies for the development of tightly
coupled, federated information systems: top-down and bottom-up. Both
approaches are compared relative to the specific requirements of information
integration in evolving environments, such as the intention of treating different
kinds of heterogeneity, preserving source autonomy and enabling change
management while ensuring consistency. We describe in detail how the intrinsic
properties of such strategies affect their ability to cope with these requirements.
Based on the results of this study and on extensive experiences, we propose a
combined strategy based on the intensive use of object-oriented modelling
concepts. We show that this approach is well-suited to fulfil our vision of a
consistent evolution within the paradigm of continuous engineering of federated
information systems.

1 Introduction

1.1 Federated Information Systems (FIS)

In this paper, we discuss strategies for the development of large information systems, as
part of long-lived enterprise-wide or world-wide information solutions. For a cost-
effective and evolutionary development of such solutions, obviously valuable ’legacy’
information resources have to be considered as members of the fedaration, which are in
general, up to a different extent,

• physically distributed,

• heterogeneous, with respect to technical aspects, software, operational
environment, structure, environment, data model and semantic issues,

• and finally, operationally independent, i. e. autonomous.

We consider systems where these resources are mainly constituted by a number of
databases with local applications around them. The user's or customer's interest is to
obtain an integrated access to the information resources as a "global" information
system, see Fig. 1. We call such a system a federated information system (FIS) [3].
Federated information systems in our understanding differ from federated database
systems as described in [15] in the fact that information resources are not restricted to
database systems, but may include also other kinds of information provision.



Figure 1:  Architecture of Tightly Coupled FIS

The meanwhile classical work of Sheth and Larson ([15]) defines a reference schema
architecture for tightly coupled federated database systems which use a global schema
for integration.1 They distinguish five different schema layers: The local conceptual
schemas of the information resources are translated into the common data model
(CDM) to form the component schemas. The relevant part of an information resource is
identified in its export schema, related to the wrapper schema in our architecture (Fig.
1). Export schemas are integrated into federation schemas resolving structural and
semantic heterogeneity of data sources. User’s views on the information system are
represented by export schemas defined on the federation layer, similar to views in
centralized database systems.

Note that this scenario does not imply that federated schemas are developed from
export schemas by schema integration, although this is a possibility frequently used. We
call this the bottom-up strategy. Another approach is the top-down strategy:

• The bottom-up approach builds federations starting from the information
resources towards the global schema, using a database integration method ([17],
[16], [10]). The structure of the federated schema depends directly on the
integrated export schemas and the integration method used.

• The top-down approach builds federations starting from a global schema deter-
mined by the information needs of the global information system. This involves a
classical schema design problem and can for instance use object-oriented analysis
and design methods or view integration techniques ([7], [13]). Component
schemas are related to the federated schema in an extra step by means of corre-
spondence specifications.

1. In contrast, loosely coupled systems only provide a uniform query language. We only
consider tightly coupled FIS in this paper.

Foundation layer

User /

(information resources)

Federation

Wrapper layer

Presentation

layer

Local
applications

Global applications  layer



In this paper, we first characterise both strategies and highlight their respective advan-
tages and pitfalls. Our results are based on extensive experiences in the development of
FIS in diverse application domains like environmental information systems ([2]) and
bioinformatics ([9]). After comparing both methods, we propose a combined strategy
for the development of federated information systems which aims at combining the
good and avoiding the bad aspects of the two approaches.

1.2 Evolution of Information Systems

Under the observation that software development today never starts from scratch, the
classical view of the software engineering discipline has to be revised, recognizing
software development as an continuously on-going process. This predominant paradig-
matic issue in (particularly: federated!) information systems development can be
subsumed under the term 'continuous software engineering' (CSE, [12]).

Our CSE approach aims to define a methodology for a smooth and consistent process of
development facing continuous change. It is based on classical techniques from
software reengineering, including many valuable experiences from:

• classical forward engineering of new systems components, including the steps of
analysis, design, and implementation,

• reverse engineering of existing legacy components, as far as relevant issues for a
further development are missing, and

• the re-engineering basics starting from simple maintenance aspects via different
levels of change and modification tasks until larger projects of renovation or even
replacement of complete components (see e.g. [5]).

Focusing on the conceptual design of federated information systems, the CSE paradigm
leads to the requirement that the development process has to be able to cope with
continuous change and evolution. Having the reference architecture of Fig. 1 in mind,
one recognizes two important situations that need to be addressed:

• at the bottom level, there will be a continuous change, emerging from newly
developed, modified or additionally offered information resources. These new or
changing components are in first place designed in the context of local require-
ments and do usually not conform to global requirements such as the structure of
a global schema.

• from the top level, the desire for new information services will appear as soon as
the global value of the given information structure is recognized by a relevant
number of users, and an idea of possibly new sources exists.

The paradigm of ’continuous software engineering’ is reflected in our strategy for the
development of federated information systems by two main principles:

• The strategy combines top-down and bottom-up development steps, including
both forward and reverse engineering.

• We extend the object-oriented modeling technique by model correspondences
which explicitly specify the relationships between schemas. The explicit specifi-
cation enables the continuous change on schema and configuration level.



2 Development Strategies for FIS
The two different strategies of engineering a tightly coupled FIS – bottom-up vs. top-
down – have fundamental implications on the scope of usable development techniques,
the possible degree of automation of the development process, the "strength" of the
resulting relationships between the system layers, and particularly on the evolvability
regarding the continuous engineering of the information system.

In this section, we will carefully analyse both strategies according to these points. We
do not want to propagate one of the strategies for the development of all kinds of FIS,
but rather to characterize them to give a basis to choose the best one of them according
to the specific application requirements.

2.1 Bottom-up Strategy

Building a tightly integrated FIS bottom-up means that the initial requirement is the
need to have an integrated access to a given number of data sources. A typical scenario
is the need to have detailed and uniform access to all databases of a company to build
global applications, possibly ahead of a migration. The information needs are on the
same abstraction level as the data sources, i.e. aggregations, as they are typical for data
warehouse scenarios, are not required.

In such a setting, a very tight connection between the federated and the component
schemas is required, particularly if updates in sources should be done through the feder-
ation layer.2 Therefore (semi-) formal integration methods should be applied which
comply with the four classical requirements for schema integration, i.e., completeness,
correctness, understandability and minimality ([4]).

The general integration process of these methods starts with the analysis of horizontal
correspondences between component schemas. Based on those, an integrated schema is
derived together with the correspondences between the integrated schema and the
export schemas (see Fig. 2a). These correspondences typically take the form of view
definitions; however, if updates are allowed, even those views must obey strict rules to
avoid the notorious "update through view" problems. Only the second step can be done
automatically (or with few user interaction); the definition of semantic correspondences
between components on the contrary requires considerable user interaction.

The tight connection between federation and foundation layer greatly affects the evolv-
ability of the system. A change in the configuration or in the export schema of one
component triggers a new integration process, resulting in an adapted federated schema.
Apart from this being a costly process which is impossible to automate, it often entails
even more modifications, considering dependencies of global applications on the feder-
ation layer.

We conclude that a bottom-up strategy is appropriate to small and medium-sized FIS
which require a read or write access to well integrated specific information resources
without the need of further data aggregations. Because this strategy has several disad-

2. In the following, we will use the term ’component schema’ synonymously for the export
schema of a component.



vantages with respect to autonomy and evolution, it should be applied only in those
scenarios where the configuration of the infrastructure and the sources are relatively
stable ([11]).

Figure 2:  Development Strategies for FIS

2.2 Top-down Strategy

Top-down strategies root in classical database design methods: Starting from global
information needs, the according views are integrated into one conceptual schema
whose storage schema is then possibly assigned to distributed components.

Although we have to consider existing information resources, top-down approaches are
oriented to global information needs, whereas the connection to the sources is not as
relevant in first place. For instance, a company might want to offer the service to find
the lowest book prices from different Internet stores; or a decision support system might
want to integrate certain customer information that is spread over multiple department
databases. In these cases, the actual schema of components does not matter for the
design of the federated schema. From the four classical requirements for schema
integration, i.e., completeness, correctness, understandability and minimality, two do
not apply. Firstly, only relevant parts of schemas must be included (completeness).
Secondly, there is no need to represent data on the global level exactly as in the compo-
nents, if only derived or abstracted data is required (correctness; the mapping becomes
uni-directional). One might for instance decide to cluster customers into salary groups
and not to store the precise income. Note that such aggregations effectively exclude the
possibilities of updating sources through the federated schema.

The global schema can either be generated ad-hoc or by a more formal analysis process,
starting from use-case descriptions and ending by view integration techniques.
Furthermore, applications which use common ontologies or standard schemas are also
inherently top-down (e.g. STEP schemas [6] or OMG’s domain standards).

Component schemas are considered in a second step, when vertical correspondences
between the global schema and source schemas are established to allow for the trans-
lation of queries (see Fig. 2b). Each component can be considered separately from other
sources when relating it to the federated schema. Correspondences in top-down
approaches are necessarily more complex than in bottom-up strategies because the

Export
schema

Federated
schema

Export
schema

Export
schema

Horizontal
correspondences

Schema  integration

Export
schema

Federated
schema

Export
schema

Export
schema

Vertical
correspondences

develop top-down
Bottom-up
Strategy

Top-down
Strategy

a) b)



federated schema and the component schemas are designed independently. For
instance, abstractions and aggregations are possible, and a much broader class of heter-
ogeneity conflicts can occur. Correspondence specification languages need to provide
enough expressiveness to cope with such problems.

Regarding the continuous engineering, we conclude that top-down strategies have
advantages compared to bottom-up approaches. They are more appropriate in scenarios
where sources are quickly evolving, if it often happens that sources are removed or new
sources are added, if schema integration is infeasible or too expensive, or if the global
requirements themselves are changing [8]. However, they typically result in a less
‘tight’ integration than bottom-up approaches and are bound up with less formal
integration methods. For instance, the nature of the correspondences often prevents any
update operations, restricting top-down to read-only scenarios.

2.3 Mixed Strategies

From this discussion, we can conclude that as well bottom-up approaches as top-down
approaches in their pure form may apply well in particular FIS development scenarios.
However, in the general case of complex information infrastructures based on several
(previously unrelated) autonomous components and their evolution over long periods of
time, we have to take the view of well-known software engineering methodologies,
which typically are based on appropriate mixtures of bottom-up with top-down steps in
analysis, design and realization of a given software product.

3 A Combined Top-Down/Bottom-Up Development Strategy
based on Extensions of Object-oriented Modeling

Based on experiences in our current application project areas of environmental infor-
mation systems (see for example [2]) and molecular biology ([9]) we propose a devel-
opment strategy for the conceptual design of large-scale FIS which provide a global
read-only access to autonomous legacy information systems.

To meet both the requirements of complex information needs and integration of existing
information resources we combine a top-down strategy with a bottom-up approach. The
central integration concept are model correspondence assertions which explicitly
specify the relationships between schemas.

3.1 General Strategy

Our approach towards a model-based conceptual design of FIS includes the following
steps:

• modelling use cases for the additional (global) presentation layer connecting the
design in the information viewpoint to the enterprise viewpoint;

• modelling information structures and behavioural principles of the new
component considering the domain of interest in general (using/building an
ontology and classifications of the application area) as well as the specific infor-
mation needs;



• modelling information structures and application contexts of the underlying
legacy information systems only as far as required;

• if necessary, relating the underlying models as far as required (horizontal corre-
spondences);

• relating the underlying models to the (only virtually existing) new structures
(vertical correspondences);

• designing domain-specific and generic structural and behavioural models to allow
reusability in future;

• iterating this process again and again, always specifying further refinements of the
models themselves, but particularly of the dependencies and consistency condi-
tions between them.

These steps form a multi-cycle development model. Note that they in general cannot be
ordered into one process sequence but have to be carried out in parallel, reflecting their
interdependencies. On one hand, the information which will be provided on-top
naturally depends on existing resources; on the other hand, the legacy systems need to
be chosen and analysed relative to the information needs on-top.

Our strategy results in a revised model architecture:

Figure 3:  Model Architecture for FIS

Foundation layer
(information resources)

Wrapper layer Export
component

schema

Export
component

schema

Export
component

schema

Local
schema

Local
schema

Local
schema

Federated
schema

Global
structural
schema

Global
structural
schema

Global
dynamic
model

Global
dynamic
model

Federation
layer

Presentation layer

Model
correspondences



This shows that complex information needs require modelling of structural as well as
behavioural aspects. The underlying information resources are modelled as far as
required. The federated schema is built top-down under consideration of existing infor-
mation resources. This implies that we concentrate on the vertical correspondences to
benefit from the advantages regarding schema changes as described above.

We use explicitly formulated model correspondences which relate the federated schema
to the underlying export schemas. They are specified separately for each component to
emphasize the autonomy of components. Correspondence specifications, which in the
essence are a special kind of meta data, should be treated as explicit data in the feder-
ation layer. By doing so, one can react on changes by data manipulation operations, like
updates or deletion, instead of reprogramming and recompilation.

3.2 Applying Object-Oriented Modelling Languages

Technically, we make use of the manifold of techniques in the Unified Modeling
Language (UML [14]) and supplementing techniques within the object-oriented
paradigm.

Our experiences show that the object-oriented paradigm supports the design and
evolution of federated information systems in different directions:

• It helps in (reverse) modelling of relevant parts of legacy systems as well as in the
(forward) analysis and design of new components.

• It helps to relate information structures and their use within business processes by
integrating structural and behavioural modelling.

• It helps to relate conceptual and architectural design within a component-based
engineering approach — one important aspect in continuous engineering of the
system regarding all engineering viewpoints.

• They are extensible with techniques to support the specification of relationships
between autonomous information models — one important aspect in the context
of FIS.

Some of the UML diagramming languages have been proven useful in the concrete
application of our general development strategy. For the (top-down-related) modelling
starting from use cases towards a federated ’goal’ schema use case diagrams and their
refinements via activity and sequence diagrams can be applied instead of textual
descriptions. Class diagrams are used for structural modelling of the federation layer
(top-down again) and of underlying resources (in a sense of bottom-up reverse
modelling of different sources using a uniform notation). Finally, behaviour will be
modelled as far as needed by using state diagrams for internal behaviour; sequence
diagrams or collaboration diagrams for typical collaboration sequences in the whole
system. The semantic equivalence between sequence and collaboration diagrams,
moreover, helps in improving coherence between structural and behavioural models.

Relating different schemas and resolving heterogeneity conflicts is the most important
task in conceptual design of FIS. [1] introduces a formal specification language for
model correspondence assertions in federated information systems. It allows both the



specification of horizontal and vertical correspondences and considers the special
requirements on correspondences of our development strategy. As such correspondence
specifications are not appropriately expressible in existing UML notation, we suggest
an extension to the class diagrams for explicitation of these correspondences by
combining the graphical notation with our formal specification language.

4 Conclusions
Based on experiences in state environmental information systems and systems in
molecular biology, we analysed development strategies for tightly coupled, federated
information systems. We focused on the main requirements for any such approach:

• The need to integrate existing components that are in physically distributed, heter-
ogeneous, and autonomous;

• The need to comfort continuous change and evolution.

We conlude that a bottom-up strategy is appropriate for scenarios in which a tight
integration of a given set of immutable information resources without data abstraction
is required. Therein, formal integration methods can be applied satisfying the require-
ments of completeness and correctness. In contrast, a top-down strategy is beneficial if
more complex information needs exist, or if continous change is prevailing. Generally,
top-down approaches result in a less ‘tight’, but more flexible integration than bottom-
up approaches.

Based on this analysis we described a combined object-oriented approach. It basically
follows a top-down approach to build the federated schema considering both structural
and behavioural aspects. The information resources are analysed and modelled as far as
required simultaneously to the global level. The connection between federation and
foundation layer is established using explicitly formulated model correspondence asser-
tions. The separation of correspondences of different sources and the explicit specifi-
cation supports the evolution of the resulting information infrastructure.

We argued for object-oriented modelling techniques such as use-cases and structural
and behavioural modelling, extended with special techniques to specify vertical and
horizontal correspondences. Even without introducing language and method exten-
sions, object-oriented techniques seem to be appropriate since they support a
continuous software engineering process, including forward as well as reverse
engineering steps.

References
[1] S. Busse, A specification language for Model Correspondence Assertions, Part I: Overlap

Correspondences, Technical Report Nr. 99-8, TU Berlin, 1999.

[2] S. Busse, R.-D. Kutsche, Metainformationsmodelle für flexibles Information Retrieval in
vernetzten Umweltinformationsstrukturen, in: H.-D. Haasis, K.C. Ranze (Hrsg.), Umwelt-
informatik ’98 — Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft, Proc. 12.
Int. Symposium der GI, Bremen, Sept. 1998, pp. 583-596, Metropolis, 1998.



[3] S. Busse, R.-D. Kutsche, U. Leser, H. Weber, Federated Information Systems: concepts,
terminology and architectures, Technical Report Nr. 99-9, TU Berlin, 1999.

[4] C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis of methodologies for
database schema integration, ACM Computing Surveys, Vol. 18, No. 4, pp. 323-364,
Dec. 1986.

[5] E. Chikofsky, J. Cross, Reverse engineering and design recovery, IEEE Software, Jan.
1990.

[6] ISO International Standard 10303, Industrial automation systems and integration –
Product data representation and exchange, 1994 and 1997.

[7] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process,
Addison-Wesley, 1999.

[8] U. Leser, Maintenance and mediation in federated databases. 8th Workshop on Infor-
mation Technology and Systems, Helsinki, Finland, TR-19, University of Jyvaeskylae
pp. 187-196, 1998.

[9] U. Leser, Designing a global information resource for molecular biology, Datenbanken in
Büro, Technik und Wissenschaft (BTW), Freiburg, Germany, pp. 362-369, Springer,
1999.

[10] J.A. Larson, S.B. Navathe, R. Elmasri, A theory of attribute equivalence in databases
with applications to schema integration, IEEE Transactions on Software Engineering,
Vol. 15, No. 4, pp. 449-463, Apr. 1989.

[11] R. Motz, Propagation of structural modifications to an integrated schema. 2nd East
European Symposium on Advances in Databases and Information Systems; LNCS 1475,
Poznan, Poland pp. 163-174, 1998.

[12] H. Müller, H. Weber (eds.), Continuous engineering of industrial-scale software systems,
seminar report #98092, 2.-6. März 1998, IBFI, Schloß Dagstuhl, 1998.

[13] S.B. Navathe, S.G. Gadgil, A methodology for view integration in logical database
design, Proc. 8th Conf. on Very Large Databases, VLDB, Mexico City, pp. 142-164,
Sept. 1982.

[14] Object Management Group, The Unified Modeling Language (UML) Specification –
Version 1.3, available at http://www.omg.org/, 1999.

[15] A.P. Sheth, J.A. Larson, Federated database systems for managing distributed, heteroge-
neous, and autonomous databases, ACM Computing Surveys, Vol. 22, No. 3, pp. 183-
236, Sep. 1990.

[16] S. Spaccapietra, C. Parent, Y. Dupont, Model independent assertions for integration of
heterogeneous schemas, The VLDB Jounal, Vol. 1, No. 1, pp. 81-126, Jul. 1992.

[17] I. Schmitt, G. Saake, Schema integration and view generation by resolving intensional
and extensional overlappings, in: K. Yetongnon, S. Hariri (eds.), Proc. 9th ICSA Int.
Conf. on Parallel and Distributed Computing Systems (PCDS’96), pp. 751-758, Sep.
1996.


