
1

©2004-2005, Karl Aberer & J.P. Martin-Flatin 1

Conception of Information Systems
Lecture 3: Integration of Heterogeneous Databases

22 March 2005
http://lsirwww.epfl.ch/courses/cis/2005ss/

2

©2004-2005, Karl Aberer & J.P. Martin-Flatin 2

Outline

• Introduction

• Important types of Integrated Database Systems

• Wrappers: Transparent Access to Data Sources

• Schema Integration
• Schema Integration Method
– Identification of Correspondences
– Resolution of Conflicts
– Implementation of an Integrated View
– Processing of Queries and Updates

• Summary

• References

In this part of the lecture we will learn more about the technical details of
integrating information systems at the data level, or in other words about data or
database integration. We will see later approaches, which allow access to
different databases from within the same application (e.g. JDBC, transaction
monitors, or workflow management systems). Thus it is important to understand
the difference between database integration and access to different databases.
With database integration the integrated DBMS provides data processing
functionality (e.g. querying, updating) for the integrated database as if it were
managed by a standard DBMS. There exist many situations where data
processing can be done much more efficiently on the integrated database (or is
the only possiblitiy) than if it would be performed on each of the component
databases, i.e. the databases to be integrated.
-e.g. computing a join from two relations in two different relational databases.
-Computing aggregations from transactions from many different local databases
in a data warehouse.
A further advantage is that integrated DBMS support the application developer
by hiding different data models, access methods, schemas etc. which he would
have to take care otherwise within his application code. In other words
integrated DBMS provide an intermediate layer that hides heterogeneity,
distribution and autonomy.

3

©2004-2005, Karl Aberer & J.P. Martin-Flatin 3

Introduction to Data Management

• Applications use persistent data
• Problems

– Reuse
– Dependencies
– Sharing

Application

Data

FILE access

Application 1 Application 2 Application 3

Data 1 Data 2 Data 3 Data 4

FILE calls

In the most general sense an information systems runs applications accessing (a large amount of)
information that is persistently stored. The notion of persistence expresses that the lifetime of data is
independent of the execution of a program. In that sense "Persistence bridges temporal distance
among applications", similarly as distribution bridges spatial distance.
Typical examples of applications with persistent data are:

Product catalog - order application
Bank account data - bank transaction application
Gene databank - protein search application

Large databases are normally used by many different applications and the same applications are
using many different databases. This leads to a number of problems
•All applications need to know how to manage the access to a large database. There is little reuse of
the functions needed to efficiently access large datasets.
•Inconsistencies and redundancies occur in the data when different applications access the same
databases and each application has its own assumptions on which constraints or dependencies hold.
•Concurrent access to the same data leads to conflicts if multiple applications are using the same
database at the same time.
•Dependencies exist: among databases (databases assume the existence of certain data in other
databases), databases and applications (applications assume certain properties to hold in the
database), among applications (applications assume that other applications are performing certain
operations)
•Changes in the data and applications become difficult to manage. Since the "knowledge" on
dependencies is distributed in many places and since the same functionality is implemented in many
places each change becomes a complex task to perform.

4

©2004-2005, Karl Aberer & J.P. Martin-Flatin 4

Database Management Systems

• Provide a unique point of access to the data
– DDL/DML
– Transactions
– Software system

Application 1 Application 2 Application 3

Data 1 Data 2 Data 3 Data 4

FILE calls
Unique Interface

to the database

Database

Application 1

Application 2

Application 3

FILE calls

DDL/DML

A DBMS (database management systems) factors out the standard functions to
access large databases. In fact we could see a DBMS as a way of integrating the
access to otherwise unrelated data files.
A DBMS supports an abstract data model that consists of

DDL = language to describe the structure of data
DML = language to access the data (query, update)

A DBMS coordinates the access by multiple users (operational model) by
supporting the concept of transactions

Transaction = operation that moves the database from one consistent state
to another

The notion of database and database management system need to be
differentiated

The DBMS is a software system that supports DDL/DML/Transactions
for accessing a database

The main differences among different DBMS are
Data and operational model
Type of transaction support
Performance

5

©2004-2005, Karl Aberer & J.P. Martin-Flatin 5

Integrating Databases

Application 1 Application 2 Application 3

Data 1 Data 2 Data 3 Data 4

DDL/DML

DBMS 1 DBMS 2 DBMS 3 DBMS 4

Data 1 Data 2 Data 3 Data 4

DBMS 1 DBMS 2 DBMS 3 DBMS 4

wrapper wrapper wrapper wrapper

Federated DBMS

Application 1 Application 2 Application 3

DDL/DML

ql1 ql2 ql3 ql4

query language

As soon as multiple database systems come into existence it is likely that a
situation occurs where multiple applications would like to use data from multiple
of the databases managed by those DBMS. This means that queries should be be
enabled spanning multiple databases, updates should be directed to those
databases where the data is originating from and integrity constraints spanning
multiple databases should be supported.
Example: Integration of publication data. An integrated database could draw
from many different resources

Web resources: e.g. DB Server in Trier, CiteSeer citation index
Local bibliography: e.g. MS Access application for lab library
University library server: e.g. Oracle database application
Private bibliography: e.g. BibTex file, MS Word document

The difficulty of this task originates in problems like
Different data models at the participating DBMS
Different data schemas and representation at the participating DBMS
Different processing capabilities at the participating DBMS
Distribution and communication

This means we encounter the typical problems of distribution, heterogeneity and
autonomy when trying to integrate the access to multiple database that are a
priori unrelated. Therefore a system is required that overcomes these problems,
which is called a federated database management system. As we have learned in
the introduction also an embedding of the participating database is required,
which is provided by so-called wrappers. Wrappers overcome, for example
differences in the data models (relational, OO, file, XML, etc.).

6

©2004-2005, Karl Aberer & J.P. Martin-Flatin 6

Database Integration

Distribution

Autonomy

Heterogeneity

Centralized
DBMS

Distributed databases

Federated databases

In order to position federated database systems let us look at our problem
dimensions. Federated databases have to deal with all three problem dimensions.
There exist however situations where autonomy and heterogeneity are less
important. With distributed databases we have no heterogeneity and autonomy at
all, as they deal only with the problem of distributing on logical database over the
network in order to improve performance.

7

©2004-2005, Karl Aberer & J.P. Martin-Flatin 7

Data Integration Checklist

• Task: integrate distributed, heterogeneous (and probably autonomous)
data sources

• Abstract Model: which model to use ? Relational, object-oriented, XML ?

• Embedding

• Architectures and Systems

• Methodology

For federated database management systems the situation is fundamentally different. Since the databases participating
in a federation have been developed independently (design autonomy) we encounter normally a high degree of
heterogeneity. In addition the participating DBMS continue to serve their original purposes even when participating in a
database federation and therefore they have a high degree of autonomy.
Looking at the four key questions in information systems integration we want to look now at the first one, the question
which is the abstract model that is used for the integrated system, in other words the data model that is supported by the
federated DBMS and under which the integrated databases can be accesses. We can consider all of the existing kinds of
data models that have been proposed, and in fact each of those has also been used as global model for federated DBMS:
Relational Model

Most frequently used data model for centralized and distributed DBMS
Difficult to represent data from more complex models (documents, OO)
Thus best suited for integrating relational data sources
Difficult to represent constraints occuring in integration (e.g. generalization/specialization)

Object-oriented Data Model
Expressive
Has been proven as successful approach and used in research and some systems
Did not prevail in practice because of a lack of commercial success of OODBMS

XML, XML Schema
Is becoming a ubiquitously used data model
XML Schema contains the main elements of an object-oriented data model
Can be used both for representation of data and documents

From these characterizations we can see that most likely the XML based models will become the prevailing global data
model that is used for integration of databases. Therefore we will give an in-depth coverage of this model. But before
we will repeat shortly the main aspects of the other data models.

8

©2004-2005, Karl Aberer & J.P. Martin-Flatin 8

1. Important Types of Integrated Database Systems

• Multidatabases
– Integrated access to different relational DBMS

• Federated Databases
– Integrated access to different DBMS

• Mediator Systems
– Integrated access to different data sources (on the web)

• Data Warehouses
– Materialized integrated data sources

The different types of integrated database systems follow a natural evolution:
originally the main problem was to integrate data from different relational
databases and to create an intermediate layer that would let them appear like a
single relational database. This led to the so-called multidatabase architectures.
However, much of the data is not stored in relational databases, but either in
legacy databases (hierarchical or network databases), non-standard databases
(object-oriented databases) or in document-oriented formats (files, EDI data,
Web data). Thus federated databases go one step further by integrating data from
databases that use different data models. Furthermore, they typically also support
the semantic integration of the database schemas. As a result they provide a
database system layer that would provide full DBMS functionality (OLTP
processing, online transaction processing) when accessing data from different
database systems. On the Web data sources typically do not support full DBMS
functionality. Therefore another form of federated DBMS evolved which
focusses on read-only access to online resources on the Web, so-called mediator
systems. Finally for the online analysis of large datasets from multiple data
sources which are OLTP databases, which also requires only read-only access,
data warehouses are another approach to allow the efficient processing of so-
called OLAP queries (OLAP = online analytical processing).

9

©2004-2005, Karl Aberer & J.P. Martin-Flatin 9

Multidatabases

• Enable transparent access to multiple (relational) databases
(relational database middleware)
– Hide distribution, different database language variants
– Process queries and updates against multiple databases (2-phase commit)
– Do not hide the different database schemas

Source: IBM

The task of multidatabases is to enable transparent access to multiple relational
databases. In the illustration we see the basic architecture of a multidatabase (the
example is taken from DataJoiner of IBM). Data Joiner uses the proprietary
database clients (respectively their APIs) to access the different relational
databases. It can overcome the differences among the different SQL dialects, and
can decompose queries which are posed against the component databases (see
example on next slides) as well as process updates (using 2-phase commit, we
will introduce this concept later in the lecture). An important aspect is that
multidatabases do not hide the different schemas from the component databases,
the multidatabase schema is just the union of the schemas from the component
databases (after renaming, in order to avoid name conflicts).

10

©2004-2005, Karl Aberer & J.P. Martin-Flatin 10

Multidatabase Schemas

PUBLICATIONS(PNR, TITLE, AUTHOR, JOURNAL)
AUTHORS(ANR, TITLE, NAME, AFFILIATION)

Database 1 (e.g. Sybase) schema

PAPERS(NUMBER, TITLE, WRITER, PUBLISHED)
WRITER(FIRSTNAME, LASTNAME, NROFPUBLICATIONS)

Database 2 (e.g. Oracle) schema

Sybase.PUBLICATIONS(PNR, TITLE, AUTHOR, JOURNAL, PAGES)
Sybase.AUTHORS(ANR, TITLE, NAME, AFFILIATION)

Oracle.PAPERS(NUMBER, TITLE, WRITER, PUBLISHED)
Oracle.WRITER(FIRSTNAME, LASTNAME, NROFPUBLICATIONS)

Multidatabase schema (e.g. DataJoiner)

This figure illustrates the usage of schemas in multidatabases. The components
have each an own database schema, and the database can be accessed using this
schema through the corresponding database client (e.g. one can submit queries
against this schema to the client). The multidatabase schema is the schema that a
user/developer who is using the multidatabase system sees. It is nothing else than
the union of the two component schemas after renaming, by adding a prefix to
the relational table names.

11

©2004-2005, Karl Aberer & J.P. Martin-Flatin 11

Multidatabase DML Processing

SELECT p2.title
FROM Sybase.PUBLICATIONS p1, Oracle.PAPERS p2
WHERE p1.title = p2.title

SELECT title
FROM PAPERS

SELECT title
FROM PUBLICATIONS

To/from database server (through network)

Multidatabase

Sybase
Client

Oracle
client

When a DML statement, such as a query, is submitted, the multiDBMS has to
decompose it into queries against the two component databases. This is a non-
trivial task, because it has to determine first which tables are from which
database, which predicates apply to only a single database and which predicates
apply to tuples from both databases. The latter ones can only be evaluated within
the multidatabase, whereas the former ones can be evaluated within the
component databases. In the example this is illustrated: the queries against the
component databases do not contain the join predicate. The join itself needs to be
evaluated at the multidatabase level. One of the main challenges in developing
multidatabases is thus to find good strategies of how to decompose and evaluate
queries against multiple databases in an efficient manner.

12

©2004-2005, Karl Aberer & J.P. Martin-Flatin 12

Federated Databases Schema Architecture

• Export Schema
– Unifies data model
– Defines access functions

• Import Schema
– view on export schema

• Integrated schema
– Homogenizes and unions import schemas

• Views
– as in centralized DBMS

View 1 View 2 View 3

Integrated Schema

Export
Schema

Export
Schema

Export
Schema

Export
Schema

Import
Schema

Import
Schema

Import
Schema

Import
Schema

...

Relational.
DBMS

Objectorient.
DBMS

File
System

Web
Server

Federated databases go one step further than multidatabases by transforming the databases to be
integrated both with respect to the data model as well as with respect to the database schema. Thus data
stored according to different data models can be integrated and the database schema of the integrated
database can be very different from the schemas of the component databases (which we will call in the
following also component schemas). In order to structure the process of mapping the data from the
component databases to the integrated database, a 5-layer abstract schema architecture has been
introduced. It separates the different concerns in the mapping process.
In a first step differences in the data models (relational, XML etc.) are overcome by providing export
schemas, which are expressed in the same (canonical) data model. Each component database can decide
autonomously which data and which access to the data to provide in the export schema. These export
schemas can be used by different integrated databases.
In a second step the integrated databases decide which data to use from the component databases by
specifying an import schema. The import schema can of course only use what is provided by the export
schema, thus it is a view on the export schema.
In a third step the integrated DBMS maps the data obtained from different databases as defined in the
import schemas into one common view, the integrated schema. This can be a complex mapping, both at
the schema level and the data level (we will extensively discuss this step later in the section on schema
integration). The integrated schema is what the integrated database provides to the applications as
logical database schema.
As in standard databases from the integrated schema application-specific views can be derived.
In practice the systems not always follow strictly this architecture and different layers are combined
(e.g. often there is no clear distinction among the export and import schemas). Still the architecture is a
very useful tool in order to distinguish the different aspects that need to be addressed in database
integration.

13

©2004-2005, Karl Aberer & J.P. Martin-Flatin 13

Data 1 Data 2 Data 3 Data 4

DBMS 1 DBMS 2 DBMS 3 DBMS 4

Generic Federated DBMS Architecture

wrapper wrapper wrapper wrapper

Federated DBMS
(Mediator)

Application 1 Application 2 Application 3

query language

ql1 ql2 ql3 ql4

query language

The standard approach to implementing the federated schema architecture is
given by the generic federated DBMS architecture. The component DBMS
(DB1-4) are accessed by so-called wrappers. The task of the wrappers is to map
the component data models into the canonical data model and thus to support the
export schemas for each of the component DBMS. The federated DBMS is the
system that implements the integrated schema, based on the import schemas and
provides the different views to the applications.
The integration function that is performed by the federated DBMS is also termed
frequently as taking the role of a "mediator".

14

©2004-2005, Karl Aberer & J.P. Martin-Flatin 14

Federated DBMS Example

PUBLICATIONS(PNR, TITLE, AUTHOR, JOURNAL, PAGES)
AUTHORS(ANR, TITLE, FIRSTNAME, SURNAME AFFILIATION)

ORACLE – SQL DBMS

<!ELEMENT book (Title, author)>
<!ELEMENT title #PCDATA>
<!ELEMENT author #PCDATA>

XML - DBMS

<complexType name="Book">
<element name="title" type="string"/>
<element name="authors" type="string"/>
<element name="pages" type="string"/>

</complexType>
(Wrapper – provides export schema)

<complexType name="book">
<element name="title" type="string"/>
<element name="author" type="string"/>

</complexType>

(Wrapper – provides export schema)

Federated DBMS
(Mediator)

TCP/IP Network

Import schemas

Integrated schema

Views

We illustrate now the relationship between the federated schema architecture and
system architecture by an example. Here the component DBMS use different data
models (relational and XML DTD) and the canonical data model is again
different, i.e. XML Schema. Thus the wrappers provide the necessary
functionality to access data in the component databases according to the
canonical data model. For the relational database, for example, a complex type
"Book" is defined in the export schema that contains data from both tables
PUBLICATIONS and AUTHORS (assuming the element "authors" contains the
author names). For populating the export schema (or for transforming the data)
the wrapper would need to compute a join using the underlying database system.
For the XML database the export schema is an XML Schema that exactly
corresponds to the XML DTD. Thus also the transformation of the XML data is
simple, because it needs not to be transformed at all !

15

©2004-2005, Karl Aberer & J.P. Martin-Flatin 15

Federated DBMS Example

<complexType name="Book">
<element name="title" type="string"/>
<element name="authors" type="string"/>
<element name="pages" type="string"/>

</complexType>

<complexType name="book">
<element name="title" type="string"/>
<element name="author" type="string"/>

</complexType>

<complexType name="Book">
<element name="title" type="string"/>
<element name="authors" type="string"/>

</complexType>

Import schema DB1

<complexType name="book">
<element name="title" type="string"/>
<element name="author" type="string"/>

</complexType>
Import schema DB2

<complexType name="Book">
<element name="title" type="string"/>
<element name="author" type="string"/>

</complexType> Integrated schema

Views

Federated DBMS (Mediator)

Next we zoom into the internal workings of the federated DBMS. First the
federated database determines the import schemas. As it is not using the element
"pages" from DB1 the import schema drops this element. Otherwise the schemas
remain unchanged. The two import schemas, though similar, still contain
differences in the names. Both "Book"-"book" and "authors"-"author" are
incompatible names. Therefore in order to arrive at an integrated schema the
federated DBMS has to map the two import schemas into one integrated schema
as shown above (of course in general the differences among the schemas will be
much larger – and how to produce mappings to integrated schemas in the general
case will be discussed later). What is not shown in the illustration is the
corresponding mapping at the data level. Since now books from two databases
are mapped into one integrated database, it can occur that the same book is
contained in both component databases. Then the federated DBMS has to
recognize such a situation and take the corresponding action, e.g. by instantiating
such a book only once in the integrated database.

16

©2004-2005, Karl Aberer & J.P. Martin-Flatin 16

Federated Databases Query Processing

Submit query Q

ORACLE – SQL DBMS XML - DBMS

Q = FOR $b IN //Book
RETURN $b/author

Q1 = FOR $b IN //Book
RETURN $b/authors

Q2 = FOR $b IN //book
RETURN $b/author

Q1

Q1' = SELECT a.name
FROM AUTHORS a

Q1'

Q2

Q2' = //book/author

Q2'

A1 =
{<authors> … <\authors>}

A1 A2

A2

A2 =
{<author> … <\author>}

A1'={<author> … <\author>}
A = A1' ∪ A2

Return result A

Once the integration is established at the schema level, the federated DBMS needs to support
standard operations on the integrated databas, in particular DML operations. Since multiple
schemas and data models are involved, this task is considerably more complex than in the case of
multidatabases. This is illustrated in this example: assume a query for all authors of books is now
submitted to the integrated database in XML Query. First the federated DBMS has to determine
which databases can contribute to the answer and generate from the query Q that is posed against
the integrated schema, queries that can be posed against the import schemas (Q1 and Q2). In that
step it has also to invert the mappings that have been performed during integration (e.g. mapping
back to the names "book" and "authors"). Then the query is forwarded to the wrapper without
change since the import schema is just a projection on the export schema. The wrapper has now
the task to convert the query from a query in the canonical query language and data model to a
query in the model of the component database. For the relational database this requires the
transformation to an SQL query, whereas for the XML database the query is converted to an
XPath query. Then the wrappers submit those queries to their respective component database
systems and receive results in their respective data models. For the relational database this means
that now the wrapper has to convert the relational result into an XML representation. For the
XML database no change is required since the data representation (namely XML documents) is
the same independently of whether XML DTDs or XML Schemas are used as XML type
definitions. Once the federated DBMS receives the results it has to map the result data from the
import schema to the representaiton of the integrated schema. For our example this requires a
renaming of the element name "authors" to "author" for result A1. (note that the renaming of
"book" is not required as this name does not occur in the result). Then the federated DBMS
computes the result of the query by performing a union (and thus eliminating duplicates). Note
that for more complex mappings from the import schemas to the integrated schema this step can
be considerably more complex). Then the final result can be returned to the application.

17

©2004-2005, Karl Aberer & J.P. Martin-Flatin 17

The Web as Loosely Coupled Federated Database

• Many different, widely distributed
information systems

• Heterogeneity
– Structural homogeneous: HTML and URL
– Semantically heterogeneous: no explicit schemas

• Autonomy
– Runtime autonomy: pages change on

average every 4 weeks, dangling links

• Distribution
– Replication (proxies) and caching

frequently used

A1

A3

A2

Document

Filesystem

DBMS

Whereas traditionally federated DBMS assumed a fairly controlled and static
environment for database integration (as we would encounter it for example in
the merger of two companies that need to integrate their DBMS), the problem of
data integration underwent an evolution with the arrival of the WWW. We may
consider also the Web as a collection of data sources for which integrated data
access is desireable. Even without any additional technology we can view the
Web as a very loosely coupled federated database. The canonical data model
would be HTML, the web sites would be very autonomous and the distribution is
wide.

18

©2004-2005, Karl Aberer & J.P. Martin-Flatin 18

Mediator Systems

• Main differences to conventional federated databases
– Read-only access
– Non-database resources
– Light-weight and flexible

Source: Kutsche

However, for more coordinated forms of access to Web data one might want to
take an approach that follows the federated DBMS paradigm, with some
adaptations. For example, by providing wrappers, we could map data from the
HTML model to the XML model. This mapping is of course in general more
difficult to achieve, since data represented in HTML does not have a schema
(non-database resources), and thus the "semantics" has to be extracted from the
content of the data. Also mediators in general would not be required to be able to
deal with updates, since foreign Web sites cannot be changed anyway. Thus a
federated DBMS on the Web would focus on read-only access. A practical
requirement is that the infrastructure for data integration on the web must be
more light-weight and adaptable. Integrated database systems that carry these
characteristics are nowadays called mediator systems.

19

©2004-2005, Karl Aberer & J.P. Martin-Flatin 19

Example: Integrated Product Information

USA>sports USA>toys Europe

streetprices.com

HTML HTML HTML HTML

relational ? XML ? ASCII ? HTML ?

golfshop.com chipshot.com bestvaluegolf.combuygolf.com

Static set of shops
slow change rate

Data accessed
through Internet

Standardized
views

An application where the mediator approach is frequently being used on the
WWW is product and/or price comparison. In this application one extracts from
online shops the essential product information (typically by analysing the HTML
code using hand-written wrappers) and integrates this information for comparison
purposes.

20

©2004-2005, Karl Aberer & J.P. Martin-Flatin 20

• Are a specialized form of federated database system, where the integrated
database is materialized
– perform efficient data analysis
– OLAP (on-line analytical processing)
– Data mining

• Uses typically limited forms of database schemas
(e.g. relational star schemas)
– Supports multidimensional data model

• Main problems
– Updates and data consistency
– Wrapper development
– Efficient processing of OLAP and data mining queries

Data Warehouses

Source
databasesSource

databasesSource
databases

Central
data warehouse

Datamart

Datamart

OLAP and mining
tools

OLAP and mining
tools

integrate

extract

extract

query

query

Metadata

Another variation of the federated databases approach are data warehouses.
These are used to globally analyse large datasets that are composed from the data
originating in many OLTP databases (e.g. the transaction data from all stores of a
retailer all over the country) in order to derive strategic business decisions. Since
updates play no role here, and efficient processing of large datasets is the critical
issue, the data is not directly accessed in the component databases, but
materialized in the integrated database, the central data warehouse. From this
warehouse typically application-specific views are derived by materializing them
in so-called datamarts, to which then the different data analyis tools are applied.
The canonical data model for data warehouses is typically a specialized form of
the relational data model, the so-called multidimensional data model, where all
data is kept in one central table with different attributes that represent the
different dimensions. It differs insofar from the relational model as it provides
much more powerful operations on the multidimensional data for aggregation
(similarly as in an Excel spreadsheet)
Important problems in data warehouses include the development of wrappers,
which are not only used to map from different data models and schemas into the
datawarehouse schema, but also to perform so-called data-cleansing, i.e. remove
errors and noise from the original data.

21

©2004-2005, Karl Aberer & J.P. Martin-Flatin 21

Aspects to Consider for Integration

• General issues
– Bottom-up vs. top-down engineering

• from existing schema to integrated and vice versa

– Virtual vs. materialized integration
– Read-only vs. read-write access
– Transparency

• language, schema, location

• Data model related issues
– Type of sources

• structured, semi-structured, unstructured

– Data model of integrated system
• canonical data model

– Tight vs. loose integration
• Use of a global schema

– Support for semantic integration
• collection, fusion, abstraction

– Query model
• Structured queries, retrieval queries, data mining

Top-down approaches start by first specifying the global information need (in
form of a global schema) and then engineering the access to relevant data
sources. This approach is suitable when the integrated database serves a specific
global information need (e.g. price comparison). Typically information sources
can be easily changed and updates are performed at the local databases.
Bottom-up approaches start from a given set of databases with the goal to provide
a single point of access to them. Thus the schema is constructed from existing
ones, updates occur typically at the global level, and the question of providing a
complete global schema, that covers all the concepts modelled in the local
schemas becomes an issue. Generally, bottom up approaches lead to more tightly
integrated systems and are harder to develop and maintain.
The tradeoffs between virtual and materialized integration have already been
discussed in the context of data warehouses. Materialization has the following
advantages: High performance for queries against the materialized data set and
control over materialized data. It has also disadvantages: Keeping the data up-to-
date requires possibly complex update procedures, and the federated DBMS has
to provide a possibly large amount of storage space.
Write access is often disregarded in database integration for practical reasons,
like, many interfaces, e.g. on the WWW, do not allow a write, writing through
integrated views raises all problems of updating data through views, as
mentioned earlier, writing through an integrated schema e.g. raises the question
of which source should be used if a class is present in more than one data source
and global transactions require complex protocols. ./.

22

©2004-2005, Karl Aberer & J.P. Martin-Flatin 22

Properties of Integrated Information Systems (typical)

OLAPAnySQL/XQLSQLQuery model

location,
schema,
language

location,
schema,
language

location,
schema,
language

(location),
language

Transparency

collection,
fusion,
aggregation

collection,
fusion,
abstraction

collection,
fusion,
(abstraction)

collectionSupport for semantic
integration

yesyesyesnoGlobal schema

multi-
dimensional

semi-
structured, XML

relational,
OO,
XMLSchema

relationalCanonical data model

allallstructuredstructuredType of sources

read-onlyread-onlyread-writeread-writeRead-only vs. read-write

materializedvirtualvirtualvirtualVirtual vs. materialized

bottom-uptop-downbottom-upnoneBottom-up vs. top-down

Data
Warehouses

Mediator
Systems

Federated
databases

Multidatabases

./. Different data integration approaches provide different forms of transparency
(i.e. location transparency to overcome distribution, language transparency to
overcome differences in data models, schema transparency to overcome
differences in schemas)
Obvious criteria to distinguish different database integration approaches are the
data models supported both for component databases and at the integrated level
and the presence of a global schema.
Different approaches can be distinguished also according to the support of
semantic integration that is given:
-in the simplest case only collection both at schema and data level is supported
(i.e. as in multidatabases)
-At the next level of complexity the capability of fusion of data objects is
supported: objects from different sources can be identified as being equal and are
mapped into a single object in the federated database
-The most complex form of integration is when the abstract model of the objects
is manipulated (what operations are possible will be discussed in the section on
schema integration), i.e. new abstractions are derived in the integrated schema. A
special form of abstraction is aggregation, where multiple objects are aggregated
into single objects which summarize their properties.
Finally not only the structural model is essential, but also the possible access to
the data by means of a query language that is supported.
The table on this slide summarizes the different criteria for the approaches to
database integration that we have introduced.

23

©2004-2005, Karl Aberer & J.P. Martin-Flatin 23

Data Integration Checklist

• Task: integrate distributed, heterogeneous (and probably autonomous)
data sources

• Abstract Model
– Relational, OO, XML, XMLSchema

• Embedding ()
– XSLT, XQuery

• Architectures and Systems
– Multidatabases, federated databases, mediator/wrapper, data warehouse

• Methodology

24

©2004-2005, Karl Aberer & J.P. Martin-Flatin 24

2. Wrappers: Transparent Access to Data Sources

• Wrappers are software to overcome syntactic heterogeneity
(communication, data model, functionality)

request/query result/data

Compensation
for missing
processing
capabilities

Transformation
of data model

Communication
interface

Source data

Metadata

We give now a more detailed overview of wrapper technology. As a consequence
of the variety of possible mappings they have to support wrappers vary
substantially in their approaches and architectures. Nevertheless we can identify
some fundamental components that every wrapper contains.
-it has to be able to receive requests and return results acccording to the canonical
data model through it's API
-It has to transform requests and while doing that to compensate for missing
functionality that is expected by the API it supports and that is not supported by
the database that manages the data source
-It has to have a communciation interface with which it contacts the source
database
-It has to transform data from the data source to the canonical data model
-It maintains metadata for the data models and schemas involved and the
mappings from the source to the canonical data model.

25

©2004-2005, Karl Aberer & J.P. Martin-Flatin 25

Mappings between Different Data Models

• Data Model consists of
– Data types
– Integrity constraints
– Operations (query language)

• Criteria for mappings between data models
– Completeness
– Efficiency

• Example
– The mapping of a relational table instance R(A1, …, An)

into an XML structure is straightforward
– The problems are

• Which constraints can be maintained ?
• What query processing capabilities are available ?
• e.g. joins are missing

– XML Schema + XML Query
solve many of these problems !

Mappings between data models concern not only the mapping of structural data,
but also the mapping of the associated constraints on the data and the mapping of
the operations on the data. Principally any data structure can be mapped into any
other structure in some way (since there exists always a mapping between
countable sets). The question is to which extent the constraints that are imposed
by one data model are maintained by the mapping (completeness), to which
extent the operations can be mapped and how efficiently the mapping is both in
time (when performing operations) and space (for storing the mapped data). For
the example of mapping a relational table into XML it is obvious that every table
can be respresented by some XML document easily, as shown in the figure.
Problems occur when operations should be performed on the mapped data. For
example, since XML has no concept of keys (neither primary or foreign) updates
on the XML data can violate key constraints that have been specified in the
relational model. Also queries against a relational database cannot always be
mapped to corresponding queries in XPath, if XPath would be the query language
used.
This explains why XML schema and XML Query have been defined in order to
overcome these deficiencies of the original XML model.

26

©2004-2005, Karl Aberer & J.P. Martin-Flatin 26

Categories of Wrappers

• There exists no standard approach to build wrappers

• Functionality
– One-way: only transformation of data (e.g. for data warehouses)
– Two-way: transformation of requests and data

• Development
– Hard-wired wrappers, for specific data sources
– Semi-automatic generation: wrapper development tools
– Automatically generated wrappers

• Availability
– Standalone programs (data conversion)
– Components of a federated or multi-DBMS
– Database interfaces to foreign data

Since there exist a multitude of ways of how wrappers are built, we want to classify them first according to some
criteria. A major difference is whether wrappers are used only to transform data into one direction (which is always
sufficient when the data is materialized in the federated database and no updates are made) or both queries and updates
need to be processed by the wrapper,which makes them considerable more complex.
The second class of criteria applies to the development of wrappers. Today, typically many wrappers are still custom-
developed software. There exist for specific classes for applications, in particular for data warehousing, tools that
support developers in the definition of the data mapping, typically using visual tools, and generated from the mapping
definition the necessary transformation code. Automatically generated wrappers are largely a research area or only
applicable in very specialized settings.
Also with respect to deployment there exist different possibilities: transformation or data conversion tools are often
deployed as stand-alone programs, as they have little interaction with the operation of the federated DBMS. Data
conversion tools are specific software that support conversions among different formats, perform standard conversions
semi-automatically, allow definition of complex conversion logic by the developer, and maintain a repository of
conversion methods. Examples of such tools are the Microsoft data import tools and XMLJunction. Also XSLT can be
considered as a possible appraoch to data conversion in the XML world, e.g. for conversion of XML data into
relational data.
Multidatabase products such as IBM DataJoiner, Miracle, or EDS allow to access multiple relational databases (from
different vendors) and support as such components to access relational database through the corresponding database
clients, as discussed earlier. We can consider these components as wrappers that overcome syntactic heterogeneity
among relational DBs, and thus support properties such as location transparency, SQL dialect transparency, error code
transparency, or data type transparency. They are examples of two-way wrappers.
Finally, many database products provide (tightly) integrated functionality for integrating access to foreign data
sources, such that the database products becomes a federated database platform.

27

©2004-2005, Karl Aberer & J.P. Martin-Flatin 27

Database Interfaces to Foreign Data

• Some database products allow to define user-defined mappings to data
from arbitrary sources
– Data appears like local data
– Mapping includes (some) compensation for missing functions at the source

• Examples
– Informix' Virtual Table Interface (VTI)

• Any data to relational data

– Tamino's SQLNode
• relational data to XML data

Relational XML

Informix' Virtual Table Interface (VTI)

Tamino's SQLNode

We give in the following two examples of how current database system products
support the wrapping of foreign data sources into their own data model. The first
example, Informix – in the meanwhile a product of IBM -, is an example of how
data of any origin may be wrapped into a relational DBMS, thus making the
relational DBMS a platform for managing heterogeneous databases. The second
example, Tamino – a product of Software AG -, shows of how a native XML
DBMS can be used in order to integrate relational data from SQL database
sources. In fact, Tamino has been developed with the intention of providing a
XML-based federated DBMS layer.

28

©2004-2005, Karl Aberer & J.P. Martin-Flatin 28

Example: Tamino

• Native XML storage system
• Tamino allows to provide an XML view on a relation

– Definition of a DTD
– Transformation to Tamino's schema language
– Setting of attribute values that specify of how the data is accessed in the RDBMS

<!ELEMENT patient (name, address, sex, born)>
<!ELEMENT name (surname, firstname)>
<!ELEMENT surname #PCDATA>
<!ELEMENT firstname #PCDATA>
<!ELEMENT address (street, housenumber, city,

zip, phone)>
<!ELEMENT street #PCDATA>
<!ELEMENT housenumber #PCDATA>
<!ELEMENT city #PCDATA>
<!ELEMENT zip #PCDATA>
<!ELEMENT phone #PCDATA>
<!ELEMENT sex #PCDATA>
<!ELEMENT born #PCDATA>

Tamino, a recent product by Software AG, supports native storage of XML
documents. "Native" means that XML documents are not mapped to another
storage systems (e.g. a relational database), but a specialized storage system for
XML documents is used. In addition, a native storage system for XML allows to
pose queries in a XML query language. In the case of Tamino this language is
Xpath (support for XML Query is planned).
The interesting property of Tamino is, that it allows to use the XML engine not
only to store XML documents, but also to integrate data from other datasources
(like relational) under a common XML view. Thus it is an XML-based federated
DBMS (i.e. using XML as canonical data model) . In order to support this feature
Tamino needs a mechanism in order to wrap other data sources in an XML view.
We describe this mechanism now more closely: In order to store XML data in
Tamino first a DTD needs to be provided (which is the database schema). We
give also a schematic representation in tree format of the DTD on the right hand
side. Afterwards this DTD is converted to a proprietary schema language, that
bears some similarity with the XML schema language. Based on this schema
representation the access to SQL data sources is specified. We look at this step in
more detail on the following slides.

29

©2004-2005, Karl Aberer & J.P. Martin-Flatin 29

Tamino Integration Architecture

XPath processor

XML Object
composer

SQL
engine

Tamino native
XML DB

Tamino
Relational DB

30

©2004-2005, Karl Aberer & J.P. Martin-Flatin 30

Integrating Relational Data Into Tamino

Source: SAG

Relational Table:

Patients(LastName,FirstName,
Street, HouseNumber,
City, PhoneNumber,
YearOfBirth)

Now let us assume that the data of the patient documents originates from an SQL table with the schema shown above. As a
result certain parts of the document are no longer stored as an XML document in Tamino, but rather dynamically
derived from the SQL table. In order to enable the mapping the DBMS requires certain information:

• The database from which the table originates
• The table from which the data originates
• The mapping of table columns to XML elements
• The data types of the mapped columns
The corresponding information is annotated at the right side of the elements in the form of (XML) attributes. We can

distinguish two major cases:
• The mapping of a table onto an element (name, address): Here subsets of the attributes of a relation are associated with

an element. The content of these elements then is derived from relation attributes (colunms). In order to specify this
mapping the database name ("Data Sources") and the table name ("SQL-Table") need to be known.

• The mapping of a relation attribute (column) onto an element (lastname, firstname, street etc.): These are subelements
of an element that has been mapped from the corresponding relation. In order to specify this mapping the name of the
column needs to be known (the table is already implied by the super-element). Additionally some information on the
data type of the column is supplied in order to correctly interpret the contents and search predicates.

There exist a number of constraints that have to be observed, like:
- for a node SQLTable the objtype PCDATA/CDATA is not possible
- Similarly for SQL Coumn SEQ/CHOICE are not possible (for obvious reasons)
- The multiplicity for SQL Column can only be 1 or 0 (if nothing is mentioned the default is 1, as in the example)
- Infofields are used for XML elements that are not derived from the SQL table but occur within the scope of an SQL

Table derived element

31

©2004-2005, Karl Aberer & J.P. Martin-Flatin 31

Integrating Relational Data in Tamino Schema Language

<?xml version="1.0" ?>
<!-- <!DOCTYPE Collection SYSTEM "inorep.dtd"> -->
<ino:collection

xmlns:ino="http://namespaces.softwareag.com/tamino/"
ino:name="hospital" ino:key="ID001">

<ino:doctype
ino:name="patient" ino:key="p1"
ino:options="READ INSERT UPDATE DELETE">

<ino:node
ino:name="patient" ino:key="p2"
ino:obj-type="SEQ" ino:parent="p1"
ino:search-type="no" ino:map-type="Native" />

<ino:node
ino:name="name" ino:key="p3"
ino:obj-type="SEQ" ino:parent="p2"
ino:search-type="no" ino:map-type="SQLTable"
ino:datasource="Admin" ino:sqltable="Patients"
ino:sqlprimarykeys=""Last Name"" />

<ino:node
ino:name="lastname" ino:key="p4"
ino:obj-type="PCDATA" ino:parent="p3"
ino:search-type="text" ino:map-type="SQLColumn"
ino:sqlcolumn="Last Name" ino:data-type="CHAR" ino:precision="50" />

This example shows of how the declarations of the mapping from the SQL database into the XML format are included in a
Tamino schema by using the attribute values SQLTable and SQLColumn (rather than "Native" as originally) and including
the attributes for specifying the detailed mapping, that have been introduced on the previous slide.
This is a sample of Tamino's schema language, including the representation of the first three elements of the DTD, namely
patient, name and lastname. The first element <ino:collection> declares a Tamino collection, which is a set of XML
documents that the Tamino system manages. There also the "ino" namespace is introduced (short for Tam-ino). Every schema
constituent obtains a name using "ino:name" and a unique identifier using "ino:key". The second element <ino:doctype> starts
the declaration of a document type definition. The options declare that documents corresponding to this DTD may be
accessed in any of the possible ways listed. The <ino:node> elements are used to declare elements of the document type. They
correspond exactly to the elements of the DTD we have introduced before. For each element
•a name is declared using attribute ino:name, which matches the name in the DTD,
•a unique key is declared, which is used to express the parent-child relationships in the DTD,
•the type of the element is declared by using ino:objtype, where the possible types correspond to the possible types in a DTD,
•the parent node is declared using ino:node, and the reference is given by the value of an attribute ino:key
•the search-type is declared, specifying whether this field is indexed, there are two possiblities SQL compliant indexing
(standard) and full text indexing (text)
•and the map-type is declared which is "Native" in case the element is stored in XML format within Tamino.
For practical purposes Tamino provides tools in order to automatically generate from an existing DTD such a Tamino schema
representation. We will see in the following how be declaring other map-types data from external sources can be integrated
into Tamino.

32

©2004-2005, Karl Aberer & J.P. Martin-Flatin 32

Data Integration Checklist

• Task: integrate distributed, heterogeneous (and probably autonomous)
data sources

• Abstract Model
– Relational, OO, XML, XMLSchema

• Embedding
– XSLT, XQuery, various wrapping technologies

• Architectures and Systems
– Multidatabases, federated databases, mediator/wrapper, data warehouse

• Methodology

33

©2004-2005, Karl Aberer & J.P. Martin-Flatin 33

3. Schema Integration

• 3.1 Schema Integration Method
• 3.2 Identification of Correspondences
• 3.3 Resolution of Conflicts
• 3.4 Implementation of an Integrated View

In this part of the lecture we will address a methodological question: even when
we have the complete infrastructure for integrating information systems at the
data level in place and the canonical data model is chosen, there remains the
important task to develop the necessary mappings for the data from the
heterogeneous data sources into the integrated database. This is considered as
being a very hard problem on which a substantial amount of research has been
and is being devoted. While this problem originally was studied in the context of
database integration, it is today drawing additional attention in other contexts,
such as e-business (integration of message formats and electronic catalogs) or the
Semantic Web (integration of knowledge bases and ontologies).
The creation of an integrated schema from heterogeneous schemata is required in
order to make heterogeneity at the schema level transparent for applications.
Schema integration is more complex than just producing the union of the
component schemas (as it is done in multidatabases):
-Data from the different sources can be complementary or overlapping, therefore
data objects from different sources may be corresponding to each other or data
objects belonging to different classes in different databases need to collected into
a common class.
-Another problem is that the same data can be represented in different ways. This
requires mappings (both at the schema and data level) that can overcome the
differences (schema integration)
-Once an integrated schema is provided the capability to process queries against
the integrated schema is required. Therefore also mappings in order to
decompose and translate from the global query to queries against the component
databases need to be provided.

34

©2004-2005, Karl Aberer & J.P. Martin-Flatin 34

3.1 Schema Integration

• Creation of an integrated schema from heterogeneous schemata

• Integration Method

Schema translation
(wrapper)

Correspondence
investigation

Conflict resolution
and schema integration

In the following we will focus on the first two issues, of how to create an
integrated (global) schema. The fundamental approach consists of three steps:

• The schemas of the component databases need to be translated from the
original data model into the canonical data model. This is done by a wrapper
and we have seen in the previous section different possibilities of how this
can be achieved. Therefore we have to treat this point no further.

• When all component schemas are available within the same data model the
next step is to explore which concepts in the different original schemas
correspond to each other, i.e. which are semantically related (describe the
same, similar or otherwise related concepts of the "real world")

• After identifying corresponding concepts in general it will be the case that
they are represented in different ways - one says they have conflicting
representations. Therefore in a next step corresponding concepts that are
structurally different but should be represented in the same way in the
integrated schemas need to be mapped into a common representation. This
step is called conflict resultion. The result of this step is an integrated
schema.

35

©2004-2005, Karl Aberer & J.P. Martin-Flatin 35

3.2 Identification of Correspondences

• Determine which concepts in two schemas correspond to each other
– no automatic solution
– manual or semi-automatic approach

• Sources for missing information
– source schema
– source database
– source application
– database administrator, developer, user

• Semi-automatic approaches (source schema or database analysis)
– semantic correspondences (e.g. related names)
– structural correspondences (e.g. reachability by paths)
– data analysis (e.g. distribution of values)

Since correspondences among schemas and databases are always dependent on
the application context (essentially the human interpretation of the databases in
terms of real-world concepts) no automatic solution to correspondence
identification is possible. Besides of directly consulting the human users involved
(system administrators, developers or end users) one can attempt to extract from
the available sources of information (schema, database, applications) certain
correspondences by semi-automatic methods. Examples of such analyses are
mentioned:
-correspondences which can be detected at the language level (words). For that
purpose the use of dictionaries or thesauri is a possibility.
-Correspondences which can be detected at the structural level (data structures).
The underlying assumption is that if something is modelled by using the same or
a similar data structure the semantics might be similar.
-Finally a similar argument can also be applied at the data level. If characteristics
of the data (like data distribution) are similar this can be an indication that the
data corresponds to the same semantic concepts.

36

©2004-2005, Karl Aberer & J.P. Martin-Flatin 36

Example: Integration of Two Relational Schemata

• SCHEMA 1

PUBLICATIONS(PNR, TITLE, AUTHOR, JOURNAL, PAGES)
AUTHORS(ANR, TITLE, NAME, AFFILIATION)
JOURNAL(JNR, NAME, PUBLISHER, ISSUE, MONTH, YEAR)

• SCHEMA 2

PAPERS(NUMBER, TITLE, WRITER, PUBLISHED)
WRITER(FIRSTNAME, LASTNAME, NROFPUBLICATIONS)
PUBLISHED(TYPE, PROCEEDINGS, PP, DATE)

In the following we will use a simple example of two relational databases
(respectively schemas) in order to illustrate the process of schema integration.
We choose the relational model for the purpose of compactness of presentation
(relational schemas are syntactically more compact than XML schemas, for
example). The analogous examples could of course be goiven also for other data
models, like XML Schema.
The two example schemas use slightly different representations of publication
data and our goal is to derive now one integrated schema for integrating data that
originates from databases corresponding to these two database schemas.

37

©2004-2005, Karl Aberer & J.P. Martin-Flatin 37

Example: Detecting Correspondences

• Analysis of relation and attribute names (semantic correspondences)
– C1: S1.PUBLICATIONS related to S2.PAPERS (relevant)
– C2: S1.AUTHORS.TITLE related to S2.PAPERS.TITLE (irrelevant)
– C3: S1.PUBLICATIONS.TITLE related to S2.PAPERS.TITLE (relevant)

• Analysis of structural correspondences
– Shows that C3 is more relevant than C2
– S1.PUBLICATIONS.TITLE related to S2.PAPERS.TITLE

• same path leads to TITLE

– S1.AUTHORS.TITLE not related to S2.PAPERS.TITLE
• different path leads to TITLE

– Shows a further relationship: C4: S1.JOURNALS.YEAR related to S2.PUBLISHED.YR
since both share the data type DATE

• Analysis of data values
– C5: S1.PUBLICATIONS.PAGES related to S2.PUBLISHED.PP

– Both attributes contain always two substrings that are up to 3 digit numbers

We start by investigating the correspondences:
Semantic correspondences can be typically derived from an analysis of names (attribute and relation names here). For
example we might use a thesaurus that provides homonyms and synonyms for words (Homonyms are words that denote
different real-world concepts, e.g. paper could denote a published paper, but also waste paper, which in the context of this
applications makes a difference. Synonyms are different words that denote the same real world concept). From the
thesaurus we can take that "publications" and "papers" can be synonyms and therefore that the relations
S1.PUBLICATIONS and S2.PAPERS might be corresponding (we prefix relations by their source schema name
similarly as in the multidatabase approach to identify them uniquely). By consulting a human user we would confirm that
this correspondence is in fact relevant (This appears to be trivial for such a small example, but for very large schemas a
system that identifies such candidates for correspondences can be very helpful) A second correspondence that can be
detected is between the attributes S1.AUTHORS.TITLE and S2.PAPERS.TITLE , which are actually the same.
However, in that case we have a homonym, and a human user would decide that this correspondence is not relevant. A
third correspondence at name level, between S1.PUBLICATIONS.TITLE and S2.PAPERS.TITLE is again relevant.
The fact that correspondence C2 is more relevant than correspondence C3 could also have been detected at the structural
level: Since the path (here the relation) that leads to title in C3 is the same, whereas it is different in C2, it is more likely
that C3 is a correspondence.
Another correspondence can be detected at the structural level: The path S1.JOURNALS.YEAR and
S2.PUBLISHED.YR lead both to an attribute of type DATE and could therefore be related. This structural relationship
could further be strengthened by a semantic one, namely that the terms JOURNALS and PUBLISHED are semantically
close, as they relate to the same real world concept. Detecting this would require however a more sophisticated knowledge
base than a thesaurus. These are called ontologies, which provide knowledge bases (concepts, but also rules) that model
certain aspects of the real world.
Finally we can also analyse that data values that we find in the attributes. There we might detect that the attributes
S1.PUBLICATIONS.PAGES and S2.PUBLISHED.PP always contain Integer values of roughly the same range
(typically at most 3 digit numbers) and therefore the two attributes might be related (which again is a relevant
correspondence)

38

©2004-2005, Karl Aberer & J.P. Martin-Flatin 38

3.3 Resolution of Conflicts

• Types of conflicts encountered at schema level
– Naming conflicts
– Structural conflicts
– Classification conflicts
– Constraint conflicts
– Behavioral conflicts
– Data conflicts

• Types of conflicts encountered at data level
– Naming conflicts
– Representational conflicts
– Errors

After the determination of correspondences one will in general encounter the
situation that schema concepts that have been identified as being corresponding
are represented in different ways. For example, in correspondence C1 different
names are used for the same concept (relation). This is an example of a naming
conflict.
In addition to conflicts at the schema level, which are more obvious, we may also
encounter conflicts at the data level, which need to be equally resolved.
In the following we will illustrate which types of conflicts may occur and what
resolution strategies can be applied in order to resolve them.

39

©2004-2005, Karl Aberer & J.P. Martin-Flatin 39

Naming Conflicts: Homonyms and Synonyms

• Synonyms
– different terms for the same concepts, e.g.

S1.PUBLICATIONS.AUTHOR vs. S2.PAPERS.WRITER

– Resolution: introduce a mapping to a common name
e.g. (S1.PUBLICATIONS, S2.PAPERS) -> S.PUBLICATIONS

• Homonyms
– same term used for different concepts,

e.g. S1.AUTHORS.TITLE vs. S2.PAPERS.TITLE

– Resolution: introduce prefixes to distinguish the names,
e.g. S1.AUTHORS.TITLE -> S.AUTHORS.A_TITLE and

S2.PAPERS.TITLE -> S.PUBLICATIONS.P_TITLE

• Use of Ontologies and Thesauri to detect and resolve naming conflicts

We can distinguish two types of naming conflicts: different terms used for the
same concept (synonyms) and the same terms used for different concepts
(homonyms). In the first case the resolution strategy is to introduce a mapping of
the different names in the component schemas onto the same name in the
integrated schema. In the second case the same names are renamed, for example,
by adding a prefix.

40

©2004-2005, Karl Aberer & J.P. Martin-Flatin 40

Structural Conflicts

• Same concept represented by different data structures

• Example 1: Different attributes
– S1.AUTHORS.AFFILIATION and S2.WRITER.NROFPUBLICATIONS have no

corresponding attributes in the other schema
– Resolution: create a relation with the union of the attributes

• Example 2: Different datatypes
– S1.JOURNAL.MONTH and S1.JOURNAL.YEAR contain together the same information

as S2.PUBLISHED.DATE
– Resolution: build a mapping function, e.g. DATE(MONTH, YEAR)

• Example 3: Different data type constructors
– attribute vs. relation: S2.PUBLISHED.TYPE="Journal" means that the publication

is a journal, while S1.JOURNALS contains only journals
– Resolution: requires higher order mapping languages for manipulating database

schemas

Structural conflicts always occur when the same semantic concept is represented in the
different component schemas by using different data structures. Structural conflicts become
more probable the richer the data model is in terms of data structures provided. E.g. the object-
oriented model allows many more alternative ways of modelling the same concept than the
relational model. The kind of conflicts that may occur and the resolution strategies also depend
heavily on the kind of data model that is used. We therefore give just a few typical examples of
conflicts as the can occur in the integration of relational database schemas.
The first example is the case where the same objects from corresponding classes (=relations)
have different attributes. This can be easily overcome by combining all the attributes from the
different relations in the integrated relation. This means of course that many data values in the
integrated database may be NULL if objects occur only in one of the component databases.
A second frequent case is where different atomic datatypes or combinations of atomic
datatypes are used to represent the same data values. This type of conflict can be overcome by
providing appropriate data transformation functions, as shown in the example. This requires of
course that the federation layer is supporting the use of user-defined functions, one of the
reasons why OO or OO-relational DBMS are considered as suitable platforms for data
integration.
A slightly more complex type of structural conflict, which occurs in many variations, is the use
of different type constructors to model the same (or better: semantically corresponding) data
values. A typical example for this case occuring in relational schemas is the problem of using
classification attributes vs. different relations in order to classify data objects.

41

©2004-2005, Karl Aberer & J.P. Martin-Flatin 41

Classification Conflicts

• Extensions of concept are different
– Modelling constructs A and B that are recognized as corresponding can cover sets

with different scopes
– All possible set relationships

• A=B: equivalent sets
• A⊆B: A is a subset of B
• A∩B: A and B have some elements in common
• A≠B: A and B have no elements in common

• Example
– S1.AUTHORS are authors of journal papers only
– S2.WRITERS contains also authors of other types of publications

• Resolution
– build generalization hierarchies
– requires data model supporting generalization/specialization (IS-A),

e.g. object-oriented
• Additional problem

– Identification of corresponding data instances
– "real world" correspondence is application dependent
– Example: check the reliability of the bibliographic references in the two

databases, and in case of error to trace back to the source of error

Another type of conflict can occur even if the structural representation of the data
objects is identical. Classification conflicts occur when the EXTENSIONS of
(possibly but necessarily structurally identical) classes/relations are different in
the component databases. So it can be the case that two relations are recognized
as being semantically related, but having a different scope of objects that belong
to the extension. Any of the possible set relationships can describe of how the
relations are related. In order to correctly represent these relationships (and thus
to resolve the classification conflict) they need to be modelled in the integrated
schema. For this purpose generalization (IS-A) hierarchies, as we know them for
example from extended entity-relationships models, need to be constructed. After
the conflict is resolved at the schema level there still remains the problem of
identification of corresponding data instances from the component databases. The
specification of the identification predicate is highly application-dependent, it is
not unique, and in many cases it is even not definable in terms of the available
attributes of the data objects, but it has to be supplied from external sources (e.g.
humans manually identifying the corresponding instances)

42

©2004-2005, Karl Aberer & J.P. Martin-Flatin 42

3.4 Implementation of an Integrated Schema

• Use of a DML (e.g. SQL)
– approach used in multidatabases, like Data Joiner
– problem: limitation on possible mappings

• Programming
– with access to the DDL and DML
– problem: correctness of transformations not guaranteed

• Extensible databases (e.g. object-relational or OODBs)
– Rich data types, access to DDL, functions
– object-oriented models (including object-relational) are the preferred canonical

models for database integration
– problems: complexity, consistency, design methodology, …

• Schema manipulation languages (e.g. rule based, procedural)
– most promising approach
– problem: are currently available in research prototypes only

Different approaches can be considered in order to implement the mapping from
the import schemas to the global schema. Remember: in case the data is not
materialized in the integrated database, this requires a mapping of the data
from the component databases into the integrated database, as well as a
mapping of queries against the integrated databases to queries against the
component databases.

• A simple approach is to use the SQL-view mechanism when the canonical
data model is relational. Since SQL fully supports view (querying, access to
data in views) all the necessary mappings are available. The problem is that
more complex mappings cannot be expressed as views and access to views is
restricted (e.g. limitations on updates for complex views).

• The mappings can also be implement in any programming language from
which access to the DML and DDL is possible (e.g. by means of ESQL or
JDBC). This approach is general, but the problem is that no guarantees are
given to the developer whether the mapping he implements are correct.

• An approach that is frequently used, is to implement the integrated schema in
an object-oriented database schema. The advantages are a richer set of
datatypes, the access to the DDL in case the data dictionary is provided
through the same interfaces as the ordinary databases, and the possibility to
encapsulate more complex mappings in user-defined functions. Still the
problems are similar as with the programming approach. ./.

43

©2004-2005, Karl Aberer & J.P. Martin-Flatin 43

Example: Integration of Two Relational Schemata

• SCHEMA 1

PUBLICATIONS(PNR, TITLE, AUTHOR, JOURNAL, PAGES)
AUTHORS(ANR, TITLE, NAME, AFFILIATION)
JOURNAL(JNR, NAME, PUBLISHER, ISSUE, MONTH, YEAR)

• SCHEMA 2

PAPERS(NUMBER, TITLE, WRITER, PUBLISHED)
WRITER(FIRSTNAME, LASTNAME, NROFPUBLICATIONS)
PUBLISHED(TYPE, PROCEEDINGS, PP, DATE)

In the following we will use a simple example of two relational databases
(respectively schemas) in order to illustrate the process of schema integration.
We choose the relational model for the purpose of compactness of presentation
(relational schemas are syntactically more compact than XML schemas, for
example). The analogous examples could of course be goiven also for other data
models, like XML Schema.
The two example schemas use slightly different representations of publication
data and our goal is to derive now one integrated schema for integrating data that
originates from databases corresponding to these two database schemas.

44

©2004-2005, Karl Aberer & J.P. Martin-Flatin 44

Example: Implementation of an Integrated View in SQL

• Integrated view on AUTHORS and WRITERS
– Assume identical instances in AUTHORS and WRITERS are identified through a

mapping table

mapping(firstname, lastname, anr)

– Implementation in MS ACCESS SQL (barely !) doable

SELECT
[s2_writer.firstname] & " " & [s2_writer.lastname] AS name, (1)
Null AS title, Null AS affiliation, Null AS anr, (2)
s2_writer.nrofpublications
FROM s2_writer, mapping WHERE
[s2_writer.firstname] & " " & [s2_writer.lastname] NOT IN (3)
(SELECT [firstname] & " " & [lastname] FROM mapping)
UNION (4)

SELECT s1_authors.name, s1_authors.title, s1_authors.affiliation,
s1_authors.anr, Null AS nrofpublications
FROM s1_authors LEFT JOIN mapping ON s1_authors.anr = mapping.anr; (5)

• A systematic approach to schema integration would provide a schema
manipulation language that allows to apply operators to the import schemas
such that a sequence of such operators (or rules in the rule-based approach)
transform the import schemas into the integrated schema. The neccessary
mappings at the data level and for query decomposition are then
automatically derived from the schema mapping that is defined.

THIS SLIDE:
In the following we give a very simple example of how SQL views might be used

in order to obtain an integrated schema for our sample integration problem
for tables AUTHORS and WRITERS. For the correct identification of data
instances from the two relations we will need a mapping of the corresponding
names. This we assume is given by a table (that for example someone has
produced manually). Then we can provide an SQL query that can be used for
defining an integrated view on the two relations. We comment the different
steps in the example (as indicated by the numbers in the code) by referring to
which data integration problem is addressed:

– Resolution of the use of different data structures by combining textual
fields

– Resolution of the use of different attributes by including all attributes
into the integrated view

– Exclusion of the instances with occurrence in both tables
– Union of the both tables, resolution of different coverage
– Identification of corresponding instances

45

©2004-2005, Karl Aberer & J.P. Martin-Flatin 45

Data Integration Checklist

• Task: integrate distributed, heterogeneous (and probably autonomous)
data sources

• Abstract Model
– Relational, OO, XML, XMLSchema

• Embedding
– XSLT, various wrapping technologies

• Architectures and Systems
– Multidatabases, federated databases, mediator/wrapper, data warehouse

• Methodology
– Schema integration

46

©2004-2005, Karl Aberer & J.P. Martin-Flatin 46

Web as a Loosely Coupled Federated Database

• Accessing databases through the Web can be seen as a way of loosely
coupling heterogeneous data sources
– The integration of the data occurs at the user interface rather than at the data

management system

Browser

Database
server

Federated
database

server

Database
server

Strong coupling

Browser

Database
server

Database
server

Loose coupling

Web-enabled

Web-enabled

In the last part of the lecture we have seen of how data that originates from
different data sources (typically databases) can be integrated using federated
database system technology. In this part we will see of how the contents of a
database can be made accessible over the Web, i.e. by accessing it through a
web-browser. This requires that the database server is web-enabled. By web-
enabling a federated database server we can make the contents of different data
sources accessible through the Web (in a uniform manner). However, with web-
enabling of database servers, we can also short-cut the federated database layer
and directly access the data from different database servers, that are web-enabled.
In that way we also obtain an integrated access to the data sources. Since in that
case the integration takes place at the user interface layer, the coupling between
the participating database is (very) loose, and the integration functionality is
rather weak.
For illustration consider the case of accessing multiple databases by the same
query (e.g. retrieve the same product from multiple electronic catalogues). Using
a federated database layer such a query would be automatically decomposed and
the results would be collected from the different databases by the federated
database server and eventually be presented to the user. With integration at the
user interface layer the user would have to "click" his/her way through the
various query interfaces, formulate individual queries for each database and
collect the results manually, e.g. by cut and paste. Nevertheless, in principle
he/she has an integrated access, and in many cases users proceed actually exactly
in that manner.

47

©2004-2005, Karl Aberer & J.P. Martin-Flatin 47

4. Summary

• Syntactic heterogeneity, communication and transaction problems have
many solutions
– Database Middleware
– XML technology
– Distributed objects
– Transaction monitors

• Semantic heterogeneity remains a difficult problem
• Current developments

– Use of more sophisticated knowledge-based tools, e.g. ontologies, declarative
approaches

– Logic language based approaches
– Light-weight mediation on the Web based on XML technology

• Many of the heterogeneity problems illustrated for DBs also hold for
application objects (except, e.g., the extensional aspects)

48

©2004-2005, Karl Aberer & J.P. Martin-Flatin 48

5. References

• Books
– Özsu, Valduriez: Principles of Distributed Database Sytems, Second Edition,

Prentice Hall, 1999.

• Articles
– S. Busse, R.-D. Kutsche, U. Leser, H. Weber, Federated Information Systems:

concepts, terminology and architectures, Technical Report Nr. 99-9, TU Berlin,
1999.

– IEEE Data Engineering Bulletin, Volume 21, Number 3, September 1998, Special
Issue on Interoperability.

– Stefano Spaccapietra, Christine Parent, Yann Dupont: Model Independent
Assertions for Integration of Heterogeneous Schemas. VLDB Journal 1(1): 81-126
(1992).

– Fernando de Ferreira Rezende, Klaudia Hergula: The Heterogeneity Problem and
Middleware Technology: Experiences with and Performance of Database
Gateways. VLDB 1998: 146-157.

• Websites
– www-4.ibm.com/software/data/datajoiner/
– ibm.com/software/data/db2/extenders/xmlext
– www.softwareag.com/germany/products/xmlstarterkit.htm

49

©2004-2005, Karl Aberer & J.P. Martin-Flatin 49

The Big Picture

Process
models

XMLDistributed
transactions

Data
integration Foundations

Database
integration

Web database
access

TM & MQs

OTMs

EJB

Workflow
management

B2B servers

Information
systems

Message
transformation

Data
transformation

Message
representation

Canonical
model

Deployment
descriptors

Web data
model

Transaction
model

Process model

Predecessor of
Web app. servers

Process vs. Data
integration

Applications

Process
management

System
platform

functions

objects

components

