Contents

1 Introduction 3
1.1 What motivated data mining? Why is it important? . . . . . . . . .. ... 0oL 3
1.2 So, what 1s data mining? . . . . . . ... 6
1.3 Data mining — on what kind of data? . . . . . . .. ..o o 8

1.3.1 Relational databases . . . . . . . . .. .. 9
1.3.2 Data warehouses . . . . . . . .. 11
1.3.3 Transactional databases . . . . . . . . .. .. 12
1.3.4 Advanced database systems and advanced database applications . . . . . . . ... ... .. .. 13
1.4 Data mining functionalities — what kinds of patterns can be mined? . . . . . . . . ... ... . 13
1.4.1 Concept/class description: characterization and discrimination . . . . . . . ... ... .. ... 13
1.4.2 Association analysis . . . . . . . . L L e e 14
1.4.3 Classification and prediction . . . . . . . . . ... L 15
1.4.4  Clustering analysis . . . . . ... . . L L 16
1.4.5 Evolution and deviation analysis . . . . . . . . .. ... L 16
1.5 Are all of the patterns interesting? . . . . . . . . .. oL oL 17
1.6 A classification of data mining systems . . . . . . .. .o Lo 18
1.7 Major issues in data mining . . . . . . . ... Lo e 19
1.8 Summary . . . . .. 21



CONTENTS



©J. Han and M. Kamber, 1998, DRAFT!! DO NOT COPY!! DO NOT DISTRIBUTE! September 7, 1999

Chapter 1

Introduction

This book is an introduction to what has come to be known as data mining and knowledge discovery in databases.
The material in this book is presented from a database perspective, where emphasis i1s placed on basic data mining
concepts and techniques for uncovering interesting data patterns hidden in large data sets. The implementation
methods discussed are particularly oriented towards the development of scalable and efficient data mining tools.

In this chapter, you will learn how data mining is part of the natural evolution of database technology, why data
mining is important, and how it is defined. You will learn about the general architecture of data mining systems,
as well as gain insight into the kinds of data on which mining can be performed, the types of patterns that can be
found, and how to tell which patterns represent useful knowledge. In addition to studying a classification of data
mining systems, you will read about challenging research issues for building data mining tools of the future.

1.1 What motivated data mining? Why is it important?

Necessity is the mother of invention.

— FEnglish proverd.

The major reason that data mining has attracted a great deal of attention in information industry in recent
years is due to the wide availability of huge amounts of data and the imminent need for turning such data into
useful information and knowledge. The information and knowledge gained can be used for applications ranging from
business management, production control, and market analysis, to engineering design and science exploration.

Data mining can be viewed as a result of the natural evolution of information technology. An evolutionary path
has been witnessed in the database industry in the development of the following functionalities (Figure 1.1): date
collection and database creation, data management (including data storage and retrieval, and database transaction
processing), and data analysis and understanding (involving data warehousing and data mining). For instance, the
early development of data collection and database creation mechanisms served as a prerequisite for later development
of effective mechanisms for data storage and retrieval, and query and transaction processing. With numerous database
systems offering query and transaction processing as common practice, data analysis and understanding has naturally
become the next target.

Since the 1960’s, database and information technology has been evolving systematically from primitive file pro-
cessing systems to sophisticated and powerful databases systems. The research and development in database systems
since the 1970’s has led to the development of relational database systems (where data are stored in relational table
structures; see Section 1.3.1), data modeling tools, and indexing and data organization techniques. In addition, users
gained convenient and flexible data access through query languages, query processing, and user interfaces. Efficient
methods for on-line transaction processing (OLTP), where a query is viewed as a read-only transaction, have
contributed substantially to the evolution and wide acceptance of relational technology as a major tool for efficient
storage, retrieval, and management of large amounts of data.

Database technology since the mid-1980s has been characterized by the popular adoption of relational technology
and an upsurge of research and development activities on new and powerful database systems. These employ ad-
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vanced data models such as extended-relational, object-oriented, object-relational, and deductive models Application-
oriented database systems, including spatial, temporal, multimedia, active, and scientific databases, knowledge bases,
and office information bases, have flourished. Issues related to the distribution, diversification, and sharing of data
have been studied extensively. Heterogeneous database systems and Internet-based global information systems such
as the World-Wide Web (WWW) also emerged and play a vital role in the information industry.

The steady and amazing progress of computer hardware technology in the past three decades has led to powerful,
affordable, and large supplies of computers, data collection equipment, and storage media. This technology provides
a great boost to the database and information industry, and makes a huge number of databases and information
repositories available for transaction management, information retrieval, and data analysis.

Data can now be stored in many different types of databases. One database architecture that has recently emerged
is the data warehouse (Section 1.3.2), a repository of multiple heterogeneous data sources, organized under a unified
schema at a single site in order to facilitate management decision making. Data warehouse technology includes data
cleansing, data integration, and On-Line Analytical Processing (OLAP), that is, analysis techniques with
functionalities such as summarization, consolidation and aggregation, as well as the ability to view information at
different angles. Although OLAP tools support multidimensional analysis and decision making, additional data
analysis tools are required for in-depth analysis, such as data classification, clustering, and the characterization of
data changes over time.

The abundance of data, coupled with the need for powerful data analysis tools, has been described as a “data
rich but information poor” situation. The fast-growing, tremendous amount of data, collected and stored in large
and numerous databases, has far exceeded our human ability for comprehension without powerful tools (Figure 1.2).
As a result, data collected in large databases become “data tombs” — data archives that are seldom revisited.
Consequently, important decisions are often made based not on the information-rich data stored in databases but
rather on a decision maker’s intuition, simply because the decision maker does not have the tools to extract the
valuable knowledge embedded in the vast amounts of data. In addition, consider current expert system technologies,
which typically rely on users or domain experts to manually input knowledge into knowledge bases. Unfortunately,
this procedure is prone to biases and errors, and is extremely time-consuming and costly. Data mining tools which
perform data analysis may uncover important data patterns, contributing greatly to business strategies, knowledge
bases, and scientific and medical research. The widening gap between data and information calls for a systematic
development of data mining tools which will turn data tombs into “golden nuggets” of knowledge.
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Figure 1.3: Data mining - searching for knowledge (interesting patterns) in your data.

1.2 So, what is data mining?

Simply stated, data mining refers to extracting or “mining” knowledge from large amounts of data. The term is
actually a misnomer. Remember that the mining of gold from rocks or sand is referred to as gold mining rather than
rock or sand mining. Thus, “data mining” should have been more appropriately named “knowledge mining from
data”, which is unfortunately somewhat long. “Knowledge mining”, a shorter term, may not reflect the emphasis on
mining from large amounts of data. Nevertheless, mining is a vivid term characterizing the process that finds a small
set of precious nuggets from a great deal of raw material (Figure 1.3). Thus, such a misnomer which carries both
“data” and “mining” became a popular choice. There are many other terms carrying a similar or slightly different
meaning to data mining, such as knowledge mining from databases, knowledge extraction, data/pattern
analysis, data archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term, “Knowledge Discovery in
Databases” or KDD. Alternatively, others view data mining as simply an essential step in the process of knowledge
discovery in databases. Knowledge discovery as a process is depicted in Figure 1.4, and consists of an iterative
sequence of the following steps:

e data cleaning (to remove noise or irrelevant data),
e data integration (where multiple data sources may be combined)?!,
o data selection (where data relevant to the analysis task are retrieved from the database),

e data transformation (where data are transformed or consolidated into forms appropriate for mining by
performing summary or aggregation operations, for instance)?,

e data mining (an essential process where intelligent methods are applied in order to extract data patterns),

e pattern evaluation (to identify the truly interesting patterns representing knowledge based on some inter-
estingness measures; Section 1.5), and

¢ knowledge presentation (where visualization and knowledge representation techniques are used to present
the mined knowledge to the user).

1A popular trend in the information industry is to perform data cleaning and data integration as a preprocessing step where the
resulting data are stored in a data warehouse.

2Sometimes data transformation and consolidation are performed before the data selection process, particularly in the case of data
warehousing.
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Figure 1.4: Data mining as a process of knowledge discovery.

The data mining step may interact with the user or a knowledge base. The interesting patterns are presented to
the user, and may be stored as new knowledge in the knowledge base. Note that according to this view, data mining
is only one step in the entire process, albeit an essential one since it uncovers hidden patterns for evaluation.

We agree that data mining is a knowledge discovery process. However, in industry, in media, and in the database
research milieu, the term “data mining” is becoming more popular than the longer term of “knowledge discovery
in databases”. Therefore, in this book, we choose to use the term “data mining”. We adopt a broad view of data
mining functionality: data mining is the process of discovering interesting knowledge from large amounts of data
stored either in databases, data warehouses, or other information repositories.

Based on this view, the architecture of a typical data mining system may have the following major components

(Figure 1.5):

1. Database, data warchouse, or other information repository. This is one or a set of databases, data
warehouses, spread sheets, or other kinds of information repositories. Data cleaning and data integration
techniques may be performed on the data.

2. Database or data warehouse server. The database or data warehouse server is responsible for fetching the
relevant data, based on the user’s data mining request.

3. Knowledge base. This is the domain knowledge that is used to guide the search, or evaluate the interest-
ingness of resulting patterns. Such knowledge can include concept hierarchies, used to organize attributes
or attribute values into different levels of abstraction. Knowledge such as user beliefs, which can be used to
assess a pattern’s interestingness based on its unexpectedness, may also be included. Other examples of domain
knowledge are additional interestingness constraints or thresholds, and metadata (e.g., describing data from
multiple heterogeneous sources).

4. Data mining engine. This is essential to the data mining system and ideally consists of a set of functional
modules for tasks such as characterization, association analysis, classification, evolution and deviation analysis.

5. Pattern evaluation module. This component typically employs interestingness measures (Section 1.5) and
interacts with the data mining modules so as to focus the search towards interesting patterns. It may access
interestingness thresholds stored in the knowledge base. Alternatively, the pattern evaluation module may be
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Figure 1.5: Architecture of a typical data mining system.

integrated with the mining module, depending on the implementation of the data mining method used. For
efficient data mining, it is highly recommended to push the evaluation of pattern interestingness as deep as
possible into the mining process so as to confine the search to only the interesting patterns.

6. Graphical user interface. This module communicates between users and the data mining system, allowing
the user to interact with the system by specifying a data mining query or task, providing information to help
focus the search, and performing exploratory data mining based on the intermediate data mining results. In
addition, this component allows the user to browse database and data warehouse schemas or data structures,
evaluate mined patterns, and visualize the patterns in different forms.

From a data warehouse perspective, data mining can be viewed as an advanced stage of on-line analytical process-
ing (OLAP). However, data mining goes far beyond the narrow scope of summarization-style analytical processing
of data warehouse systems by incorporating more advanced techniques for data understanding.

While there may be many “data mining systems” on the market, not all of them can perform true data mining.
A data analysis system that does not handle large amounts of data can at most be categorized as a machine learning
system, a statistical data analysis tool, or an experimental system prototype. A system that can only perform data
or information retrieval, including finding aggregate values, or that performs deductive query answering in large
databases should be more appropriately categorized as either a database system, an information retrieval system, or
a deductive database system.

Data mining involves an integration of techniques from multiple disciplines such as database technology, statistics,
machine learning, high performance computing, pattern recognition, neural networks, data visualization, information
retrieval, image and signal processing, and spatial data analysis. We adopt a database perspective in our presentation
of data mining in this book. That is, emphasis is placed on efficient and scalable data mining techniques for large
databases. By performing data mining, interesting knowledge, regularities, or high-level information can be extracted
from databases and viewed or browsed from different angles. The discovered knowledge can be applied to decision
making, process control, information management, query processing, and so on. Therefore, data mining is considered
as one of the most important frontiers in database systems and one of the most promising, new database applications
in the information industry.

1.3 Data mining — on what kind of data?

In this section, we examine a number of different data stores on which mining can be performed. In principle,
data mining should be applicable to any kind of information repository. This includes relational databases, data
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warehouses, transactional databases, advanced database systems, flat files;, and the World-Wide Web. Advanced
database systems include object-oriented and object-relational databases, and specific application-oriented databases,
such as spatial databases, time-series databases, text databases, and multimedia databases. The challenges and
techniques of mining may differ for each of the repository systems.

Although this book assumes that readers have primitive knowledge of information systems, we provide a brief
introduction to each of the major data repository systems listed above. In this section, we also introduce the fictitious
AllElectronics store which will be used to illustrate concepts throughout the text.

1.3.1 Relational databases

A database system, also called a database management system (DBMS), consists of a collection of interrelated
data, known as a database, and a set of software programs to manage and access the data. The software programs
involve mechanisms for the definition of database structures, for data storage, for concurrent, shared or distributed
data access, and for ensuring the consistency and security of the information stored, despite system crashes or
attempts at unauthorized access.

A relational database is a collection of tables, each of which is assigned a unique name. Each table consists
of a set of attributes (columns or fields) and usually stores a large number of tuples (records or rows). Each tuple
in a relational table represents an object identified by a unique key and described by a set of attribute values.

Consider the following example.

Example 1.1 The AllElectronics company is described by the following relation tables: customer, item, employee,
and branch. Fragments of the tables described here are shown in Figure 1.6. The attribute which represents key or
composite key component of each relation is underlined.

e The relation customer consists of a set of attributes, including a unique customer identity number (cust_ID),
customer name, address, age, occupation, annual income, credit information, category, etc.

e Similarly, each of the relations employee, branch, and items, consists of a set of attributes, describing their
properties.

e Tables can also be used to represent the relationships between or among multiple relation tables. For our
example, these include purchases (customer purchases items, creating a sales transaction that is handled by an
employee), items_sold (lists the items sold in a given transaction), and works_at (employee works at a branch
of AllElectronics). O

Relational data can be accessed by database queries written in a relational query language, such as SQL, or
with the assistance of graphical user interfaces. In the latter, the user may employ a menu, for example, to specify
attributes to be included in the query, and the constraints on these attributes. A given query is transformed into a
set of relational operations, such as join, selection, and projection, and is then optimized for efficient processing. A
query allows retrieval of specified subsets of the data. Suppose that your job is to analyze the AllElectronics data.
Through the use of relational queries, you can ask things like “Show me a list of all items that were sold in the last
quarter”. Relational languages also include aggregate functions such as sum, avg (average), count, max (maximum),
and min (minimum). These allow you to find out things like “Show me the total sales of the last month, grouped
by branch”, or “How many sales transactions occurred in the month of December?”  or “Which sales person had the
highest amount of sales?”.

When data mining is applied to relational databases, one can go further by searching for trends or data patierns.
For example, data mining systems may analyze customer data to predict the credit risk of new customers based on
their income, age, and previous credit information. Data mining systems may also detect deviations, such as items
whose sales are far from those expected in comparison with the previous year. Such deviations can then be further
investigated, e.g., has there been a change in packaging of such items, or a significant increase in price?

Relational databases are one of the most popularly available and rich information repositories for data mining,
and thus they are a major data form in our study of data mining.
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customer
cust_ID name address age | income | credit_info
C1 Smith, Sandy | 5463 E. Hastings, Burnaby, BC, V5A 4S9, Canada | 21 | $27000 1
ttem
item_ID name brand category type price place_made supplier cost
13 hi-res-TV Toshiba | high resolution TV $988.00 Japan NikoX $600.00
18 multidisc-CDplay Sanyo multidisc CD player | $369.00 Japan MusicFront | $120.00
employee
empl_ID name category group salary commission
E55 Jones, Jane | home entertainment | manager | $18,000 2%
branch
branch_ID name address
B1 City Square | 369 Cambie St., Vancouver, BC V51 3A2, Canada
purchases
trans_ID | cust_ID | empl_.ID date time | method_paid | amount
T100 C1 E55 09/21/98 | 15:45 Visa $1357.00
items_sold
trans_ID | item_ID | qty
T100 13 1
T100 18
works_at
empl_ID | branch_ID
E55 B1

Figure 1.6: Fragments of relations from a relational database for AllElectronics.
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Figure 1.7: Architecture of a typical data warehouse.
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Figure 1.8: A multidimensional data cube, commonly used for data warehousing, @) showing summarized data for
AllElectronics and b) showing summarized data resulting from drill-down and roll-up operations on the cube in a).

1.3.2 Data warehouses

Suppose that AllElectronicsis a successful international company, with branches around the world. Each branch has
its own set of databases. The president of AllElectronics has asked you to provide an analysis of the company’s sales
per item type per branch for the third quarter. This 1s a difficult task, particularly since the relevant data are spread
out over several databases, physically located at numerous sites.

If AllElectronics had a data warehouse, this task would be easy. A data warehouse is a repository of information
collected from multiple sources, stored under a unified schema, and which usually resides at a single site. Data
warehouses are constructed via a process of data cleansing, data transformation, data integration, data loading, and
periodic data refreshing. This process 1s studied in detail in Chapter 2. Figure 1.7 shows the basic architecture of a
data warehouse for AllFElectronics.

In order to facilitate decision making, the data in a data warehouse are organized around major subjects, such
as customer, item, supplier, and activity. The data are stored to provide information from a historical perspective
(such as from the past 5-10 years), and are typically summarized. For example, rather than storing the details of
each sales transaction, the data warehouse may store a summary of the transactions per item type for each store, or,
summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional database structure, where each dimension corre-
sponds to an attribute or a set of attributes in the schema, and each cell stores the value of some aggregate measure,
such as count or sales_amount. The actual physical structure of a data warehouse may be a relational data store or
a multidimensional data cube. It provides a multidimensional view of data and allows the precomputation and
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sales
trans_ID | list of item_ID’s
T100 I1, 13, 18, 116

Figure 1.9: Fragment of a transactional database for sales at AllElectronics.

fast accessing of summarized data.

Example 1.2 A data cube for summarized sales data of AllElectronics is presented in Figure 1.8a). The cube has
three dimensions: address (with city values Chicago, New York, Montreal, Vancouver), time (with quarter values
Q1, Q2, Q3, Q4), and item (with item type values home entertainment, computer, phone, security). The aggregate
value stored in each cell of the cube is sales_amount. For example, the total sales for )1 of items relating to security
systems in Vancouver is $400K, as stored in cell (Vancouver, Q1, security). Additional cubes may be used to store
aggregate sums over each dimension, corresponding to the aggregate values obtained using different SQL group-bys,
e.g., the total sales amount per city and quarter, or per city and item, or per quarter and item, or per each individual
dimension. ad

In research literature on data warehouses, the data cube structure that stores the primitive or lowest level of
information is called a base cuboid. Its corresponding higher level multidimensional (cube) structures are called
(non-base) cuboids. A base cuboid together with all of its corresponding higher level cuboids form a data cube.

By providing multidimensional data views and the precomputation of summarized data, data warehouse sys-
tems are well suited for On-Line Analytical Processing, or OLAP. OLAP operations make use of background
knowledge regarding the domain of the data being studied in order to allow the presentation of data at different
levels of abstraction. Such operations accommodate different user viewpoints. Examples of OLAP operations include
drill-down and roll-up, which allow the user to view the data at differing degrees of summarization, as illustrated
in Figure 1.8b). For instance, one may drill down on sales data summarized by quarter to see the data summarized
by month. Similarly, one may roll up on sales data summarized by city to view the data summarized by region.

Although data warehouse tools help support data analysis, additional tools for data mining are required to allow
more in depth and automated analysis. Data warehouse technology is discussed in detail in Chapter 2.

1.3.3 Transactional databases

In general, a transactional database consists of a file where each record represents a transaction. A transaction
typically includes a unique transaction identity number (trans_ID), and a list of the items making up the transaction
(such as items purchased in a store). The transactional database may have additional tables associated with it, which
contain other information regarding the sale, such as the date of the transaction, the customer ID number, the ID
number of the sales person, and of the branch at which the sale occurred, and so on.

Example 1.3 Transactions can be stored in a table, with one record per transaction. A fragment of a transactional
database for AllElectronics is shown in Figure 1.9. From the relational database point of view, the sales table in
Figure 1.9 is a nested relation because the attribute “list of item_ID’s” contains a set of ¢tems. Since most relational
database systems do not support nested relational structures, the transactional database is usually either stored in a
flat file in a format similar to that of the table in Figure 1.9, or unfolded into a standard relation in a format similar
to that of the items_sold table in Figure 1.6. i

As an analyst of the AllFlectronics database, you may like to ask “Show me all the items purchased by Sandy
Smith” or “How many transactions include item number 137”. Answering such queries may require a scan of the
entire transactional database.

Suppose you would like to dig deeper into the data by asking “Which items sold well together?”. This kind of
market basket data analysis would enable you to bundle groups of items together as a strategy for maximizing sales.
For example, given the knowledge that printers are commonly purchased together with computers, you could offer
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an expensive model of printers at a discount to customers buying selected computers, in the hopes of selling more
of the expensive printers. A regular data retrieval system is not able to answer queries like the one above. However,
data mining systems for transactional data can do so by identifying sets of items which are frequently sold together.

1.3.4 Advanced database systems and advanced database applications

Relational database systems have been widely used in business applications. With the advances of database tech-
nology, various kinds of advanced database systems have emerged and are undergoing development to address the
requirements of new database applications.

The new database applications include handling spatial data (such as maps), engineering design data (such
as the design of buildings, system components, or integrated circuits), hypertext and multimedia data (including
text, image, video, and audio data), time-related data (such as historical records or stock exchange data), and the
World-Wide Web (a huge, widely distributed information repository made available by Internet). These applications
require efficient data structures and scalable methods for handling complex object structures, variable length records,
semi-structured or unstructured data, text and multimedia data, and database schemas with complex structures and
dynamic changes.

In response to these needs, advanced database systems and specific application-oriented database systems have
been developed. These include object-oriented and object-relational database systems, spatial database systems, tem-
poral and time-series database systems, text and multimedia database systems, heterogeneous and legacy database
systems, and the Web-based global information systems.

While such databases or information repositories require sophisticated facilities to efficiently store, retrieve, and
update large amounts of complex data, they also provide fertile grounds and raise many challenging research and
implementation issues for data mining.

1.4 Data mining functionalities — what kinds of patterns can be mined?

We have observed various types of data stores and database systems on which data mining can be performed. Let
us now examine the kinds of data patterns that can be mined.

Data mining functionalities are used to specify the kind of patterns to be found in data mining tasks. In general,
data mining tasks can be classified into two categories: descriptive and predictive. Descriptive mining tasks
characterize the general properties of the data in the database. Predictive mining tasks perform inference on the
current data in order to make predictions.

In some cases, users may have no idea of which kinds of patterns in their data may be interesting, and hence may
like to search for several different kinds of patterns in parallel. Thus it is important to have a data mining system that
can mine multiple kinds of patterns to accommodate different user expectations or applications. Furthermore, data
mining systems should be able to discover patterns at various granularities (i.e., different levels of abstraction). To
encourage interactive and exploratory mining, users should be able to easily “play” with the output patterns, such as
by mouse clicking. Operations that can be specified by simple mouse clicks include adding or dropping a dimension
(or an attribute), swapping rows and columns (pivoting, or axis rotation), changing dimension representations
(e.g., from a 3-D cube to a sequence of 2-D cross tabulations, or crosstabs), or using OLAP roll-up or drill-down
operations along dimensions. Such operations allow data patterns to be expressed from different angles of view and
at multiple levels of abstraction.

Data mining systems should also allow users to specify hints to guide or focus the search for interesting patterns.
Since some patterns may not hold for all of the data in the database, a measure of certainty or “trustworthiness” is
usually associated with each discovered pattern.

Data mining functionalities, and the kinds of patterns they can discover, are described below.

1.4.1 Concept/class description: characterization and discrimination

Data can be associated with classes or concepts. For example, in the AllElectronics store, classes of items for
sale include computers and printers, and concepts of customers include bigSpenders and budgetSpenders. It can be
useful to describe individual classes and concepts in summarized, concise, and yet precise terms. Such descriptions
of a class or a concept are called class/concept descriptions. These descriptions can be derived via (1) date
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characterization, by summarizing the data of the class under study (often called the target class) in general terms,
or (2) data discrimination, by comparison of the target class with one or a set of comparative classes (often called
the contrasting classes), or (3) both data characterization and discrimination.

Data characterization is a summarization of the general characteristics or features of a target class of data. The
data corresponding to the user-specified class are typically collected by a database query. For example, to study the
characteristics of software products whose sales increased by 10% in the last year, one can collect the data related
to such products by executing an SQL query.

There are several methods for effective data summarization and characterization. For instance, the data cube-
based OLAP roll-up operation (Section 1.3.2) can be used to perform user-controlled data summarization along a
specified dimension. This process is further detailed in Chapter 2 which discusses data warehousing. An attribute-
oriented tnduction technique can be used to perform data generalization and characterization without step-by-step
user interaction. This technique is described in Chapter 5.

The output of data characterization can be presented in various forms. Examples include pie charts, bar charts,
curves, multidimensional data cubes, and multidimensional tables, including crosstabs. The resulting de-
scriptions can also be presented as generalized relations, or in rule form (called characteristic rules). These
different output forms and their transformations are discussed in Chapter 5.

Example 1.4 A data mining system should be able to produce a description summarizing the characteristics of
customers who spend more than $1000 a year at AllFlectronics. The result could be a general profile of the customers
such as they are 40-50 years old, employed, and have excellent credit ratings. The system should allow users to drill-

down on any dimension, such as on “employment” in order to view these customers according to their occupation.
O

Data discrimination is a comparison of the general features of target class data objects with the general features
of objets from one or a set of contrasting classes. The target and contrasting classes can be specified by the user,
and the corresponding data objects retrieved through data base queries. For example, one may like to compare the
general features of software products whose sales increased by 10% in the last year with those whose sales decreased
by at least 30% during the same period.

The methods used for data discrimination are similar to those used for data characterization. The forms of output
presentation are also similar, although discrimination descriptions should include comparative measures which help
distinguish between the target and contrasting classes. Discrimination descriptions expressed in rule form are referred
to as discriminant rules. The user should be able to manipulate the output for characteristic and discriminant
descriptions.

Example 1.5 A data mining system should be able to compare two groups of AllElectronics customers, such as
those who shop for computer products regularly (more than 4 times a month) vs. those who rarely shop for such
products (i.e., less than three times a year). The resulting description could be a general, comparative profile of the
customers such as 80% of the customers who frequently purchase computer products are between 20-40 years old
and have a university education, whereas 60% of the customers who infrequently buy such products are either old or
young, and have no university degree. Drilling-down on a dimension, such as occupation, or adding new dimensions,
such as income_level may help in finding even more discriminative features between the two classes. a

Concept description, including characterization and discrimination, is the topic of Chapter 5.

1.4.2 Association analysis

Association analysis is the discovery of association rules showing attribute-value conditions that occur frequently
together in a given set of data. Association analysis is widely used for market basket or transaction data analysis.

More formally, association rules are of the form X = Y, ie, “A; A+ A Ay — By A--- A B,”, where A; (for
ie{l,...,m}) and B; (for j € {1,...,n}) are attribute-value pairs. The association rule X = Y is interpreted as
“database tuples that satisfy the conditions in X are also likely to satisfy the conditions in Y.

Example 1.6 Given the AllElectronics relational database, a data mining system may find association rules like

age(X, “20 — 29”) Adincome(X, “20 — 30K”) = buys(X, “CD player”) [support = 2%, con fidence = 60%]
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meaning that of the AllFlectronics customers under study, 2% (support) are 20-29 years of age with an income of
20-30K and have purchased a CD player at AllElectronics. There is a 60% probability (confidence, or certainty)
that a customer in this age and income group will purchase a CD player.

Note that this is an association between more than one attribute, or predicate (i.e., age, income, and buys).
Adopting the terminology used in multidimensional databases, where each attribute is referred to as a dimension,
the above rule can be referred to as a multidimensional association rule.

Suppose, as a marketing manager of AllFlectronics, you would like to determine which items are frequently
purchased together within the same transactions. An example of such a rule is

contains(T, “computer”) = contains(T, “software”) [support = 1%, con fidence = 50%]

meaning that if a transaction 7' contains “computer”, there is a 50% chance that it contains “software” as well,
and 1% of all of the transactions contain both. This association rule involves a single attribute or predicate (i.e.,
contains) which repeats. Association rules that contain a single predicate are referred to as single-dimensional
association rules. Dropping the predicate notation, the above rule can be written simply as “computer = software

[1%, 50%]". 0

In recent years, many algorithms have been proposed for the efficient mining of association rules. Association
rule mining is discussed in detail in Chapter 6.

1.4.3 Classification and prediction

Classification is the processing of finding a set of models (or functions) which describe and distinguish data classes
or concepts, for the purposes of being able to use the model to predict the class of objects whose class label is
unknown. The derived model is based on the analysis of a set of training data (i.e., data objects whose class label
is known).

The derived model may be represented in various forms, such as classification (IF-THEN) rules, decision trees,
mathematical formulae, or neural networks. A decision tree is a flow-chart-like tree structure, where each node
denotes a test on an attribute value, each branch represents an outcome of the test, and tree leaves represent classes
or class distributions. Decision trees can be easily converted to classification rules. A neural network is a collection
of linear threshold units that can be trained to distinguish objects of different classes.

Classification can be used for predicting the class label of data objects. However, in many applications, one may
like to predict some missing or unavailable date values rather than class labels. This is usually the case when the
predicted values are numerical data, and is often specifically referred to as prediction. Although prediction may
refer to both data value prediction and class label prediction, it is usually confined to data value prediction and
thus is distinct from classification. Prediction also encompasses the identification of distribution trends based on the
available data.

Classification and prediction may need to be preceded by relevance analysis which attempts to identify at-
tributes that do not contribute to the classification or prediction process. These attributes can then be excluded.

Example 1.7 Suppose, as sales manager of AllElectronics, you would like to classify a large set of items in the store,
based on three kinds of responses to a sales campaign: good response, mild response, and no response. You would like
to derive a model for each of these three classes based on the descriptive features of the items, such as price, brand,
place_made, type, and category. The resulting classification should maximally distinguish each class from the others,
presenting an organized picture of the data set. Suppose that the resulting classification is expressed in the form of
a decision tree. The decision tree, for instance, may identify price as being the single factor which best distinguishes
the three classes. The tree may reveal that, after price, other features which help further distinguish objects of each
class from another include brand and place_made. Such a decision tree may help you understand the impact of the
given sales campaign, and design a more effective campaign for the future. ad

Chapter 7 discusses classification and prediction in further detail.
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Figure 1.10: A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.
Each cluster ‘center’ is marked with a ‘+’.

1.4.4 Clustering analysis

Unlike classification and predication, which analyze class-labeled data objects, clustering analyzes data objects
without consulting a known class label. In general, the class labels are not present in the training data simply
because they are not known to begin with. Clustering can be used to generate such labels. The objects are clustered
or grouped based on the principle of mazimizing the intraclass similarity and minimizing the interclass similarity.
That is, clusters of objects are formed so that objects within a cluster have high similarity in comparison to one
another, but are very dissimilar to objects in other clusters. Each cluster that is formed can be viewed as a class
of objects, from which rules can be derived. Clustering can also facilitate taxonomy formation, that is, the
organization of observations into a hierarchy of classes that group similar events together.

Example 1.8 Clustering analysis can be performed on AllElectronics customer data in order to identify homoge-
neous subpopulations of customers. These clusters may represent individual target groups for marketing. Figure 1.10
shows a 2-D plot of customers with respect to customer locations in a city. Three clusters of data points are evident.

O

Clustering analysis forms the topic of Chapter 8.

1.4.5 Evolution and deviation analysis

Data evolution analysis describes and models regularities or trends for objects whose behavior changes over time.
Although this may include characterization, discrimination, association, classification, or clustering of time-related
data, distinct features of such an analysis include time-series data analysis, sequence or periodicity pattern matching,
and similarity-based data analysis.

Example 1.9 Suppose that you have the major stock market (time-series) data of the last several years available
from the New York Stock Exchange and you would like to invest in shares of high-tech industrial companies. A data
mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of
particular companies. Such regularities may help predict future trends in stock market prices, contributing to your
decision making regarding stock investments. ad

In the analysis of time-related data, it is often desirable not only to model the general evolutionary trend of
the data, but also to identify data deviations which occur over time. Deviations are differences between measured
values and corresponding references such as previous values or normative values. A data mining system performing
deviation analysis, upon the detection of a set of deviations, may do the following: describe the characteristics of
the deviations, try to explain the reason behind them, and suggest actions to bring the deviated values back to their
expected values.
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Example 1.10 A decrease in total sales at AllElectronics for the last month, in comparison to that of the same
month of the last year, 1s a deviation pattern. Having detected a significant deviation, a data mining system may go
further and attempt to explain the detected pattern (e.g., did the company have more sales personnel last year in
comparison to the same period this year?). a

Data evolution and deviation analysis are discussed in Chapter 9.

1.5 Are all of the patterns interesting?

A data mining system has the potential to generate thousands or even millions of patterns, or rules. Are all of the
patterns interesting? Typically not — only a small fraction of the patterns potentially generated would actually be
of interest to any given user.

This raises some serious questions for data mining: What makes a pattern interesting? Can a data mining system
generate all of the interesting patterns? Can a data mining system generate only the interesting patterns?

To answer the first question, a pattern is interesting if (1) it is easily understood by humans, (2) valid on new
or test data with some degree of certainty, (3) potentially useful, and (4) novel. A pattern is also interesting if it
validates a hypothesis that the user sought to confirm. An interesting pattern represents knowledge.

Several objective measures of pattern interestingness exist. These are based on the structure of discovered
patterns and the statistics underlying them. An objective measure for association rules of the form X = Y isrule
support, representing the percentage of data samples that the given rule satisfies. Another objective measure for
association rules is confidence, which assesses the degree of certainty of the detected association. It is defined as
the conditional probability that a pattern Y is true given that X is true. More formally, support and confidence are

defined as
support(X = Y)= Prob{XUY}.

confidence(X = Y) = Prob{Y|X}.

In general, each interestingness measure is associated with a threshold, which may be controlled by the user. For
example, rules that do not satisfy a confidence threshold of say, 50%, can be considered uninteresting. Rules below
the threshold likely reflect noise, exceptions, or minority cases, and are probably of less value.

Although objective measures help identify interesting patterns, they are insufficient unless combined with sub-
jective measures that reflect the needs and interests of a particular user. For example, patterns describing the
characteristics of customers who shop frequently at AllElectronics should interest the marketing manager, but may
be of little interest to analysts studying the same database for patterns on employee performance. Furthermore, many
patterns that are interesting by objective standards may represent common knowledge, and therefore, are actually
uninteresting. Subjective interestingness measures are based on user beliefs in the data. These measures find
patterns interesting if they are unexpected (contradicting a user belief) or offer strategic information on which the
user can act. In the latter case, such patterns are referred to as actionable. Patterns that are expected can be
interesting if they confirm a hypothesis that the user wished to validate, or resemble a user’s hunch.

The second question, “Can a data mining system generate all of the interesting patterns?’ | refers to the com-
pleteness of a data mining algorithm. It is unrealistic and inefficient for data mining systems to generate all of the
possible patterns. Instead, a focused search which makes use of interestingness measures should be used to control
pattern generation. This is often sufficient to ensure the completeness of the algorithm. Association rule mining is
an example where the use of interestingness measures can ensure the completeness of mining. The methods involved
are examined in detail in Chapter 6.

Finally, the third question, “Can a data mining system generate only the interesting patterns?’,is an optimization
problem in data mining. It is highly desirable for data mining systems to generate only the interesting patterns.
This would be much more efficient for users and data mining systems, since neither would have to search through
the patterns generated in order to identify the truely interesting ones. Such optimization remains a challenging issue
in data mining.

Measures of pattern interestingness are essential for the efficient discovery of patterns of value to the given user.
Such measures can be used after the data mining step in order to rank the discovered patterns according to their
interestingness, filtering out the uninteresting ones. More importantly, such measures can be used to guide and
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Figure 1.11: Data mining as a confluence of multiple disciplines.

constrain the discovery process, improving the search efficiency by pruning away subsets of the pattern space that
do not satisfy pre-specified interestingness constraints.

Methods to assess pattern interestingness, and their use to improve data mining efficiency are discussed throughout
the book, with respect to each kind of pattern that can be mined.

1.6 A classification of data mining systems

Data mining is an interdisciplinary field, the confluence of a set of disciplines (as shown in Figure 1.11), including
database systems, statistics, machine learning, visualization, and information science. Moreover, depending on the
data mining approach used, techniques from other disciplines may be applied, such as neural networks, fuzzy and/or
rough set theory, knowledge representation, inductive logic programming, or high performance computing. Depending
on the kinds of data to be mined or on the given data mining application, the data mining system may also integrate
techniques from spatial data analysis, information retrieval, pattern recognition, image analysis, signal processing,
computer graphics, Web technology, economics, or psychology.

Because of the diversity of disciplines contributing to data mining, data mining research is expected to generate
a large variety of data mining systems. Therefore, it is necessary to provide a clear classification of data mining
systems. Such a classification may help potential users distinguish data mining systems and identify those that best
match their needs. Data mining systems can be categorized according to various criteria, as follows.

e Classification according to the kinds of databases mined.

A data mining system can be classified according to the kinds of databases mined. Database systems themselves
can be classified according to different criteria (such as data models, or the types of data or applications
involved), each of which may require its own data mining technique. Data mining systems can therefore be
classified accordingly.

For instance, if classifying according to data models; we may have a relational, transactional, object-oriented,
object-relational, or data warehouse mining system. If classifying according to the special types of data handled,
we may have a spatial, time-series, text, or multimedia data mining system, or a World-Wide Web mining
system. Other system types include heterogeneous data mining systems, and legacy data mining systems.

e Classification according to the kinds of knowledge mined.

Data mining systems can be categorized according to the kinds of knowledge they mine, i.e., based on data
mining functionalities, such as characterization, discrimination, association, classification, clustering, trend and
evolution analysis, deviation analysis, similarity analysis, etc. A comprehensive data mining system usually
provides multiple and/or integrated data mining functionalities.

Moreover, data mining systems can also be distinguished based on the granularity or levels of abstraction of the
knowledge mined, including generalized knowledge (at a high level of abstraction), primitive-level knowledge
(at a raw data level), or knowledge at multiple levels (considering several levels of abstraction). An advanced
data mining system should facilitate the discovery of knowledge at multiple levels of abstraction.

e Classification according to the kinds of techniques utilized.
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Data mining systems can also be categorized according to the underlying data mining techniques employed.
These techniques can be described according to the degree of user interaction involved (e.g., autonomous
systems, interactive exploratory systems, query-driven systems), or the methods of data analysis employed (e.g.,
database-oriented or data warehouse-oriented techniques, machine learning, statistics, visualization, pattern
recognition, neural networks, and so on). A sophisticated data mining system will often adopt multiple data
mining techniques or work out an effective, integrated technique which combines the merits of a few individual
approaches.

Chapters b to 8 of this book are organized according to the various kinds of knowledge mined. In Chapter 9, we
discuss the mining of different kinds of data on a variety of advanced and application-oriented database systems.

1.7 Major issues in data mining

The scope of this book addresses major issues in data mining regarding mining methodology, user interaction,
performance, and diverse data types. These issues are introduced below:

1. Mining methodology and user-interaction issues. These reflect the kinds of knowledge mined, the ability
to mine knowledge at multiple granularities, the use of domain knowledge, ad-hoc mining, and knowledge
visualization.

o Mining different kinds of knowledge in databases.

Since different users can be interested in different kinds of knowledge, data mining should cover a wide
spectrum of data analysis and knowledge discovery tasks, including data characterization, discrimination,
association, classification, clustering, trend and deviation analysis, and similarity analysis. These tasks
may use the same database in different ways and require the development of numerous data mining
techniques.

e Interactive mining of knowledge at multiple levels of abstraction.

Since 1t is difficult to know exactly what can be discovered within a database, the data mining process
should be interactive. For databases containing a huge amount of data, appropriate sampling technique can
first be applied to facilitate interactive data exploration. Interactive mining allows users to focus the search
for patterns, providing and refining data mining requests based on returned results. Specifically, knowledge
should be mined by drilling-down, rolling-up, and pivoting through the data space and knowledge space
interactively, similar to what OLAP can do on data cubes. In this way, the user can interact with the data
mining system to view data and discovered patterns at multiple granularities and from different angles.

e Incorporation of background knowledge.

Background knowledge, or information regarding the domain under study, may be used to guide the
discovery process and allow discovered patterns to be expressed in concise terms and at different levels of
abstraction. Domain knowledge related to databases, such as integrity constraints and deduction rules,
can help focus and speed up a data mining process, or judge the interestingness of discovered patterns.

e Data mining query languages and ad-hoc data mining.

Relational query languages (such as SQL) allow users to pose ad-hoc queries for data retrieval. In a similar
vein, high-level data mining query languages need to be developed to allow users to describe ad-hoc
data mining tasks by facilitating the specification of the relevant sets of data for analysis, the domain
knowledge, the kinds of knowledge to be mined, and the conditions and interestingness constraints to
be enforced on the discovered patterns. Such a language should be integrated with a database or data
warehouse query language, and optimized for efficient and flexible data mining.

e Presentation and visualization of data mining results.

Discovered knowledge should be expressed in high-level languages, visual representations, or other ex-
pressive forms so that the knowledge can be easily understood and directly usable by humans. This is
especially crucial if the data mining system 1s to be interactive. This requires the system to adopt expres-
sive knowledge representation techniques, such as trees, tables, rules, graphs, charts, crosstabs, matrices,
or curves.
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e Handling outlier or incomplete data.

The data stored in a database may reflect outliers — noise, exceptional cases, or incomplete data objects.
These objects may confuse the analysis process, causing overfitting of the data to the knowledge model
constructed. As a result, the accuracy of the discovered patterns can be poor. Data cleaning methods
and data analysis methods which can handle outliers are required. While most methods discard outlier
data, such data may be of interest in itself such as in fraud detection for finding unusual usage of tele-
communication services or credit cards. This form of data analysis is known as outlier mining.

Pattern evaluation: the interestingness problem.

A data mining system can uncover thousands of patterns. Many of the patterns discovered may be unin-
teresting to the given user, representing common knowledge or lacking novelty. Several challenges remain
regarding the development of techniques to assess the interestingness of discovered patterns, particularly
with regard to subjective measures which estimate the value of patterns with respect to a given user class,
based on user beliefs or expectations. The use of interestingness measures to guide the discovery process
and reduce the search space is another active area of research.

2. Performance issues. These include efficiency, scalability, and parallelization of data mining algorithms.

e Ffficiency and scalability of data mining algorithms.

To effectively extract information from a huge amount of data in databases, data mining algorithms must
be efficient and scalable. That is, the running time of a data mining algorithm must be predictable and
acceptable in large databases. Algorithms with exponential or even medium-order polynomial complexity
will not be of practical use. From a database perspective on knowledge discovery, efficiency and scalability
are key issues in the implementation of data mining systems. Many of the issues discussed above under
mining methodology and user-interaction must also consider efficiency and scalability.

Parallel, distributed, and incremental updating algorithms.

The huge size of many databases, the wide distribution of data, and the computational complexity of
some data mining methods are factors motivating the development of parallel and distributed data
mining algorithms. Such algorithms divide the data into partitions, which are processed in parallel.
The results from the partitions are then merged. Moreover, the high cost of some data mining processes
promotes the need for incremental data mining algorithms which incorporate database updates without
having to mine the entire data again “from scratch”. Such algorithms perform knowledge modification
incrementally to amend and strengthen what was previously discovered.

3. Issues relating to the diversity of database types.

e Handling of relational and complex types of data.

There are many kinds of data stored in databases and data warehouses. Can we expect that a single
data mining system can perform effective mining on all kinds of data? Since relational databases and data
warehouses are widely used, the development of efficient and effective data mining systems for such data is
important. However, other databases may contain complex data objects, hypertext and multimedia data,
spatial data, temporal data, or transaction data. It is unrealistic to expect one system to mine all kinds
of data due to the diversity of data types and different goals of data mining. Specific data mining systems
should be constructed for mining specific kinds of data. Therefore, one may expect to have different data
mining systems for different kinds of data.

Mining information from heterogeneous databases and global information systems.

Local and wide-area computer networks (such as the Internet) connect many sources of data, forming
huge, distributed, and heterogeneous databases. The discovery of knowledge from different sources of
structured, semi-structured, or unstructured data with diverse data semantics poses great challenges
to data mining. Data mining may help disclose high-level data regularities in multiple heterogeneous
databases that are unlikely to be discovered by simple query systems and may improve information
exchange and interoperability in heterogeneous databases.

The above issues are considered major requirements and challenges for the further evolution of data mining

technology. Some of the challenges have been addressed in recent data mining research and development, {o a
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certain extent, and are now considered requirements, while others are still at the research stage. The issues, however,
continue to stimulate further investigation and improvement. Additional issues relating to applications, privacy, and
the social impact of data mining are discussed in Chapter 10, the final chapter of this book.

1.8 Summary

e Database technology has evolved from primitive file processing to the development of database management
systems with query and transaction processing. Further progress has led to the increasing demand for efficient
and effective data analysis and data understanding tools. This need is a result of the explosive growth in
data collected from applications including business and management, government administration, scientific
and engineering, and environmental control.

e Data mining is the task of discovering interesting patterns from large amounts of data where the data can
be stored in databases, data warehouses, or other information repositories. It is a young interdisciplinary field,
drawing from areas such as database systems, data warehousing, statistics, machine learning, data visualization,
information retrieval, and high performance computing. Other contributing areas include neural networks,
pattern recognition, spatial data analysis, image databases, signal processing, and inductive logic programming.

¢ A knowledge discovery process includes data cleaning, data integration, data selection, data transformation,
data mining, pattern evaluation, and knowledge presentation.

e Data patterns can be mined from many different kinds of databases, such as relational databases, data
warehouses, and transactional, object-relational, and object-oriented databases. Interesting data patterns
can also be extracted from other kinds of information repositories, including spatial, time-related, text,
multimedia, and legacy databases, and the World-Wide Web.

e A data warehouse is a repository for long term storage of data from multiple sources, organized so as
to facilitate management decision making. The data are stored under a unified schema, and are typically
summarized. Data warehouse systems provide some data analysis capabilities, collectively referred to as OLAP
(On-Line Analytical Processing). OLAP operations include drill-down, roll-up, and pivot.

e Data mining functionalities include the discovery of concept/class descriptions (i.e., characterization and
discrimination), association, classification, prediction, clustering, trend analysis, deviation analysis, and simi-
larity analysis. Characterization and discrimination are forms of data summarization.

e A pattern represents knowledge if it is easily understood by humans, valid on test data with some degree
of certainty, potentially useful, novel, or validates a hunch about which the user was curious. Measures of
pattern interestingness, either objective or subjective, can be used to guide the discovery process.

¢ Data mining systems can be classified according to the kinds of databases mined, the kinds of knowledge
mined, or the techniques used.

o Efficient and effective data mining in large databases poses numerous requirements and great challenges to
researchers and developers. The issues involved include data mining methodology, user-interaction, performance
and scalability, and the processing of a large variety of data types. Other issues include the exploration of data
mining applications, and their social impacts.

Exercises

1. What is data mining? In your answer, address the following:

(a)
(b)
()

)

(d) Describe the steps involved in data mining when viewed as a process of knowledge discovery.

Is it another hype?
Is it a simple transformation of technology developed from databases, statistics, and machine learning?

Explain how the evolution of database technology led to data mining.
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2. Present an example where data mining is crucial to the success of a business. What data mining functions
does this business need? Can they be performed alternatively by data query processing or simple statistical
analysis?

3. How is a data warehouse different from a database? How are they similar to each other?

4. Define each of the following data mining functionalities: characterization, discrimination, association, clas-
sification, prediction, clustering, and evolution and deviation analysis. Give examples of each data mining
functionality, using a real-life database that you are familiar with.

5. Suppose your task as a software engineer at Big- University 1s to design a data mining system to examine
their university course database, which contains the following information: the name, address, and status (e.g.,
undergraduate or graduate) of each student, and their cumulative grade point average (GPA). Describe the
architecture you would choose. What is the purpose of each component of this architecture?

6. Based on your observation, describe another possible kind of knowledge that needs to be discovered by data
mining methods but has not been listed in this chapter. Does it require a mining methodology that is quite
different from those outlined in this chapter?

7. What is the difference between discrimination and classification? Between characterization and clustering?
Between classification and prediction? For each of these pairs of tasks, how are they similar?

8. Describe three challenges to data mining regarding data mining methodology and user-interaction issues.

9. Describe two challenges to data mining regarding performance issues.

Bibliographic Notes

The book Knowledge Discovery in Dalabases, edited by Piatetsky-Shapiro and Frawley [26], is an early collection of
research papers on knowledge discovery in databases. The book Advances in Knowledge Discovery and Data Mining,
edited by Fayyad et al. [10], is a good collection of recent research results on knowledge discovery and data mining.
Other books on data mining include Predictive Data Mining by Weiss and Indurkhya [37], and Data Mining by
Adriaans and Zantinge [1]. There are also books containing collections of papers on particular aspects of knowledge
discovery, such as Machine Learning & Data Mining: Methods and Applications, edited by Michalski, Bratko, and
Kubat [20], Rough Sets, Fuzzy Sels and Knowledge Discovery, edited by Ziarko [39], as well as many tutorial notes
on data mining, such as Tutorial Notes of 1999 International Conference on Knowledge Disocvery and Data Mining

(KDD$9) published by ACM Press.

KDD Nuggets is a regular, free electronic newsletter containing information relevant to knowledge discovery and
data mining. Contributions can be e-mailed with a descriptive subject line (and a URL) to “gps@kdnuggets.com”.
Information regarding subscription can be found at “http://www.kdnuggets.com/subscribe.html”. KDD Nuggets
has been moderated by Piatetsky-Shapiro since 1991. The Internet site, Knowledge Discovery Mine, located at
“http://www.kdnuggets.com/”, contains a good collection of KDD-related information.

The research community of data mining set up a new academic organization called ACM-SIGKDD, a Special
Interested Group on Knowledge Discovery in Databases under ACM in 1998. The community started its first
international conference on knowledge discovery and data mining in 1995 [12]. The conference evolved from the four
international workshops on knowledge discovery in databases, held from 1989 to 1994 [7, 8, 13, 11]. ACM-SIGKDD
is organizing its first, but the fifth international conferences on knowledge discovery and data mining (KDD’99). A
new journal, Date Mining and Knowledge Discovery, published by Kluwers Publishers, has been available since 1997.

Research in data mining has also been published in major textbooks, conferences and journals on databases,
statistics, machine learning, and data visualization. References to such sources are listed below.

Popular textbooks on database systems include Database System Concepts, 3rd ed., by Silberschatz, Korth, and
Sudarshan [30], Fundamentals of Dalabase Systems, 2nd ed., by Elmasri and Navathe [9], and Principles of Database
and Knowledge-Base Systems, Vol. 1, by Ullman [36]. For an edited collection of seminal articles on database
systems, see Readings in Datlabase Systems by Stonebraker [32]. Overviews and discussions on the achievements and
research challenges in database systems can be found in Stonebraker et al. [33], and Silberschatz, Stonebraker, and

Ullman [31].



1.8. SUMMARY 23

Many books on data warehouse technology, systems and applications have been published in the last several years,
such as The Data Warehouse Toolkit by Kimball [17], and Building the Data Warehouse by Inmon [14]. Chaudhuri
and Dayal [3] present a comprehensive overview of data warehouse technology.

Research results relating to data mining and data warehousing have been published in the proceedings of many
international database conferences, including ACM-SIGMOD International Conference on Management of Data
(SIGMOD), International Conference on Very Large Data Bases (VLDB), ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS), International Conference on Data Engineering (ICDE), In-
ternational Conference on FErtending Database Technology (EDBT), International Conference on Database Theory
(ICDT), International Conference on Information and Knowledge Management (CIKM), and International Sym-
posium on Database Systems for Advanced Applications (DASFAA). Research in data mining is also published in
major database journals, such as IEEE Transactions on Knowledge and Data Engineering (TKDE), ACM Transac-
tions on Database Systems (TODS), Journal of ACM (JACM), Information Systems, The VLDB Journal, Data and
Knowledge Engineering, and International Journal of Intelligent Information Systems (JIIS).

There are many textbooks covering different topics in statistical analysis, such as Probability and Statistics for
Engineering and the Sciences, 4th ed. by Devore [4], Applied Linear Statistical Models, jth ed. by Neter et al. [25],
An Introduction to Generalized Linear Models by Dobson [5], Applied Statistical Time Series Analysis by Shumway
[29], and Applied Multivariate Statistical Analysis, 3rd ed. by Johnson and Wichern [15].

Research in statistics is published in the proceedings of several major statistical conferences, including Joint
Statistical Meetings, International Conference of the Royal Statistical Society, and Symposium on the Interface:
Computing Science and Statistics. Other source of publication include the Journal of the Royal Statistical Society,
The Annals of Statistics, Journal of American Statistical Association, Technometrics, and Biometrika.

Textbooks and reference books on machine learning include Machine Learning by Mitchell [24], Machine Learning,
An Artificial Intelligence Approach, Vols. 1-4, edited by Michalski et al. [21, 22, 18, 23], C4.5: Programs for Machine
Learning by Quinlan [27], and Elements of Machine Learning by Langley [19]. The book Computer Systems that
Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Ezpert Systems,
by Weiss and Kulikowski [38], compares classification and prediction methods from several different fields, including
statistics, machine learning, neural networks, and expert systems. For an edited collection of seminal articles on
machine learning, see Readings in Machine Learning by Shavlik and Dietterich [28§].

Machine learning research is published in the proceedings of several large machine learning and artificial intelli-
gence conferences, including the International Conference on Machine Learning (ML), ACM Conference on Compu-
tational Learning Theory (COLT), International Joint Conference on Artificial Intelligence (IJCAI), and American
Association of Artificial Intelligence Conference (AAAI). Other sources of publication include major machine learn-
ing, artificial intelligence, and knowledge system journals, some of which have been mentioned above. Others include
Machine Learning (ML), Artificial Intelligence Journal (Al) and Cognitive Science. An overview of classification
from a statistical pattern recognition perspective can be found in Duda and Hart [6].

Pioneering work on data visualization techniques is described in The Visual Display of Quantitative Information
[34] and Envisioning Information [35], both by Tufte, and Graphics and Graphic Information Processing by Bertin [2].
Visual Techniques for Ezploring Databases by Keim [16] presents a broad tutorial on visualization for data mining.
Major conferences and symposiums on visualization include ACM Human Factors in Computing Systems (CHI),
Visualization, and International Symposium on Information Visualization. Research on visualization is also published
in Transactions on Visualization and Computer Graphics, Journal of Computational and Graphical Statistics, and
IEEE Computer Graphics and Applications.
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Chapter 2

Data Warehouse and OLAP Technology
for Data Mining

The construction of data warehouses, which involves data cleaning and data integration, can be viewed as an
important preprocessing step for data mining. Moreover, data warehouses provide on-line analytical processing
(OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitates effective
data mining. Furthermore, many other data mining functions such as classification, prediction, association, and
clustering, can be integrated with OLAP operations to enhance interactive mining of knowledge at multiple levels
of abstraction. Hence, data warehouse has become an increasingly important platform for data analysis and on-
line analytical processing and will provide an effective platform for data mining. Therefore, prior to presenting a
systematic coverage of data mining technology in the remainder of this book, we devote this chapter to an overview
of data warehouse technology. Such an overview is essential for understanding data mining technology.

In this chapter, you will learn the basic concepts, general architectures, and major implementation techniques
employed in data warehouse and OLAP technology, as well as their relationship with data mining.

2.1 What is a data warehouse?

Data warehousing provides architectures and tools for business executives to systematically organize, understand,
and use their data to make strategic decisions. A large number of organizations have found that data warehouse
systems are valuable tools in today’s competitive, fast evolving world. In the last several years, many firms have spent
millions of dollars in building enterprise-wide data warehouses. Many people feel that with competition mounting in
every industry, data warehousing is the latest must-have marketing weapon — a way to keep customers by learning
more about their needs.

“So”, you may ask, full of intrigue, “what exactly is a data warehouse?”

Data warehouses have been defined in many ways, making it difficult to formulate a rigorous definition. Loosely
speaking, a data warehouse refers to a database that is maintained separately from an organization’s operational
databases. Data warehouse systems allow for the integration of a variety of application systems. They support
information processing by providing a solid platform of consolidated, historical data for analysis.

According to W. H. Inmon, a leading architect in the construction of data warehouse systems, “a data warehouse
is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s
decision making process.” (Inmon 1992). This short, but comprehensive definition presents the major features of
a data warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, distinguish data
warehouses from other data repository systems, such as relational database systems, transaction processing systems,
and file systems. Let’s take a closer look at each of these key features.

e Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product,
and sales. Rather than concentrating on the day-to-day operations and transaction processing of an orga-
nization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data



4 CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

warehouses typically provide a simple and concise view around particular subject issues by excluding data that
are not useful in the decision support process.

e Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as
relational databases, flat files, and on-line transaction records. Data cleaning and data integration techniques
are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on.

e Time-variant: Data are stored to provide information from a historical perspective (e.g., the past 5-10 years).
Every key structure in the data warechouse contains, either implicitly or explicitly, an element of time.

e Nonvolatile: A data warehouse is always a physically separate store of data transformed from the application
data found in the operational environment. Due to this separation, a data warehouse does not require transac-
tion processing, recovery, and concurrency control mechanisms. It usually requires only two operations in data
accessing: nitial loading of data and access of data.

In sum, a data warehouse i1s a semantically consistent data store that serves as a physical implementation of a
decision support data model and stores the information on which an enterprise needs to make strategic decisions. A
data warehouse is also often viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision making.

“OK”, you now ask, “what, then, is data warchousing?”

Based on the above, we view data warehousing as the process of constructing and using data warehouses. The
construction of a data warehouse requires data integration, data cleaning, and data consolidation. The utilization of
a data warehouse often necessitates a collection of decision support technologies. This allows “knowledge workers”
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conveniently obtain an overview of
the data, and to make sound decisions based on information in the warehouse. Some authors use the term “data
warehousing” to refer only to the process of data warehouse construction, while the term warehouse DBMS is
used to refer to the management and utilization of data warehouses. We will not make this distinction here.

“How are organizations using the information from data warehouses?” Many organizations are using this in-
formation to support business decision making activities, including (1) increasing customer focus, which includes
the analysis of customer buying patterns (such as buying preference, buying time, budget cycles, and appetites for
spending), (2) repositioning products and managing product portfolios by comparing the performance of sales by
quarter, by year, and by geographic regions, in order to fine-tune production strategies, (3) analyzing operations and
looking for sources of profit, and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database integration. Many organiza-
tions typically collect diverse kinds of data and maintain large databases from multiple, heterogeneous, autonomous,
and distributed information sources. To integrate such data, and provide easy and efficient access to it is highly
desirable, yet challenging. Much effort has been spent in the database industry and research community towards
achieving this goal.

The traditional database approach to heterogeneous database integration is to build wrappers and integrators
(or mediators) on top of multiple, heterogeneous databases. A variety of data joiner and data blade products
belong to this category. When a query is posed to a client site, a metadata dictionary is used to translate the
query into queries appropriate for the individual heterogeneous sites involved. These queries are then mapped and
sent to local query processors. The results returned from the different sites are integrated into a global answer set.
This query-driven approach requires complex information filtering and integration processes, and competes for
resources with processing at local sources. It is inefficient and potentially expensive for frequent queries, especially
for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of heterogeneous database inte-
gration described above. Rather than using a query-driven approach, data warehousing employs an update-driven
approach in which information from multiple, heterogeneous sources is integrated in advance and stored in a ware-
house for direct querying and analysis. Unlike on-line transaction processing databases, data warehouses do not
contain the most current information. However, a data warehouse brings high performance to the integrated hetero-
geneous database system since data are copied, preprocessed, integrated, annotated, summarized, and restructured
into one semantic data store. Furthermore, query processing in data warehouses does not interfere with the process-
ing at local sources. Moreover, data warehouses can store and integrate historical information and support complex
multidimensional queries. As a result, data warehousing has become very popular in industry.
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Differences between operational database systems and data warehouses

Since most people are familiar with commercial relational database systems, it is easy to understand what a data
warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line transaction and query processing.
These systems are called on-line transaction processing (OLTP) systems. They cover most of the day-to-
day operations of an organization, such as, purchasing, inventory, manufacturing, banking, payroll, registration,
and accounting. Data warehouse systems, on the other hand, serve users or “knowledge workers” in the role of
data analysis and decision making. Such systems can organize and present data in various formats in order to
accommodate the diverse needs of the different users. These systems are known as on-line analytical processing
(OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as follows.

1. Users and system orientation: An OLTP system is customer-oriented and is used for transaction and query
processing by clerks, clients, and information technology professionals. An OLAP system is market-oriented
and is used for data analysis by knowledge workers, including managers, executives, and analysts.

2. Data contents: An OLTP system manages current data that, typically, are too detailed to be easily used for
decision making. An OLAP system manages large amounts of historical data, provides facilities for summa-
rization and aggregation, and stores and manages information at different levels of granularity. These features
make the data easier for use in informed decision making.

3. Database design: An OLTP system usually adopts an entity-relationship (ER) data model and an application-
oriented database design. An OLAP system typically adopts either a star or snowflake model (to be discussed
in Section 2.2.2), and a subject-oriented database design.

4. View: An OLTP system focuses mainly on the current data within an enterprise or department, without
referring to historical data or data in different organizations. In contrast, an OLAP system often spans multiple
versions of a database schema, due to the evolutionary process of an organization. OLAP systems also deal
with information that originates from different organizations, integrating information from many data stores.
Because of their huge volume, OLAP data are stored on multiple storage media.

5. Access patterns: The access patterns of an OLTP system consist mainly of short, atomic transactions. Such
a system requires concurrency control and recovery mechanisms. However, accesses to OLAP systems are
mostly read-only operations (since most data warehouses store historical rather than up-to-date information),
although many could be complex queries.

Other features which distinguish between OLTP and OLAP systems include database size, frequency of operations,
and performance metrics. These are summarized in Table 2.1.

But, why have a separate data warehouse?

“Since operational databases store huge amounts of data”, you observe, “why not perform on-line analytical
processing directly on such databases instead of spending additional time and resources to construct a separate data
warchouse?”

A major reason for such a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and hashing using primary keys,
searching for particular records, and optimizing “canned” queries. On the other hand, data warehouse queries are
often complex. They involve the computation of large groups of data at summarized levels; and may require the
use of special data organization, access, and implementation methods based on multidimensional views. Processing
OLAP queries in operational databases would substantially degrade the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of several transactions. Concurrency
control and recovery mechanisms, such as locking and logging, are required to ensure the consistency and robustness
of transactions. An OLAP query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations, may jeopardize the execution
of concurrent transactions and thus substantially reduce the throughput of an OLTP system.
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| Feature || OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional | knowledge worker (e.g., manager, executive, analyst)

Function day-to-day operations long term informational requirements,

decision support

DB design E-R based, application-oriented star/snowflake, subject-oriented

Data current; guaranteed up-to-date historical; accuracy maintained over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

7t of records accessed || tens millions

7t of users thousands hundreds

DB size 100 MB to GB 100 GB to TB

Priority high performance, high availability | high flexibility, end-user autonomy

Metric transaction throughput query throughput, response time

Table 2.1: Comparison between OLTP and OLAP systems.

Finally, the separation of operational databases from data warehouses is based on the different structures, contents,
and uses of the data in these two systems. Decision support requires historical data, whereas operational databases
do not typically maintain historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation (such as aggregation and
summarization) of data from heterogeneous sources, resulting in high quality, cleansed and integrated data. In
contrast, operational databases contain only detailed raw data, such as transactions, which need to be consolidated
before analysis. Since the two systems provide quite different functionalities and require different kinds of data, it is
necessary to maintain separate databases.

2.2 A multidimensional data model

Data warehouses and OLAP tools are based on a multidimensional data model. This model views data in the
form of a data cube. In this section, you will learn how data cubes model n-dimensional data. You will also learn
about concept hierarchies and how they can be used in basic OLAP operations to allow interactive mining at multiple
levels of abstraction.

2.2.1 From tables to data cubes

“What is a data cube?”

A data cube allows data to be modeled and viewed in multiple dimensions. It is defined by dimensions and
facts.

In general terms, dimensions are the perspectives or entities with respect to which an organization wants to
keep records. For example, AllElectronics may create a sales data warehouse in order to keep records of the store’s
sales with respect to the dimensions time, item, branch, and location. These dimensions allow the store to keep track
of things like monthly sales of items, and the branches and locations at which the items were sold. Each dimension
may have a table associated with it, called a dimension table, which further describes the dimension. For example,
a dimension table for item may contain the attributes item_name, brand, and type. Dimension tables can be specified
by users or experts, or automatically generated and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like sales, for instance. This theme
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is represented by a fact table. Facts are numerical measures. Think of them as the quantities by which we want to
analyze relationships between dimensions. Examples of facts for a sales data warehouse include dollars_sold (sales
amount in dollars), units_sold (number of units sold), and amount_budgeted. The fact table contains the names of
the facts, or measures, as well as keys to each of the related dimension tables. You will soon get a clearer picture of
how this works when we later look at multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing the data cube is n-
dimensional. To gain a better understanding of data cubes and the multidimensional data model, let’s start by
looking at a simple 2-D data cube which is, in fact, a table for sales data from AllElectronics. In particular, we will
look at the AllElectronics sales data for items sold per quarter in the city of Vancouver. These data are shown in
Table 2.2. In this 2-D representation, the sales for Vancouver are shown with respect to the time dimension (orga-
nized in quarters) and the item dimension (organized according to the types of items sold). The fact, or measure
displayed is dollars_sold.

Sales for all locations in Vancouver
time (quarter) || item (type)
home computer phone security
entertainment
Q1 605K 825K 14K 400K
Q2 680K 952K 31K 512K
Q3 812K 1023K 30K 501K
Q4 927K 1038K 38K 580K

Table 2.2: A 2-D view of sales data for AllElectronics according to the dimensions teme and item, where the sales
are from branches located in the city of Vancouver. The measure displayed is dollars_sold.

location = “Vancouver” location = “Montreal” location = “New York” location = “Chicago”
t item item item item
i home comp. phone sec. home comp. phone sec. home comp. phone sec. home comp. phone sec
m ent. ent. ent. ent.
e
Q1 605K 825K 14K 400K 818K 746K 43K 591K 1087K 968K 38K 872K 854K 882K 89K 623K
Q2 680K 952K 31K 512K 894K 769K 52K 682K 1130K 1024K 41K 925K 943K 890K 64K 698K
Q3 812K 1023K 30K 501K 940K 795K 58K 728K 1034K 1048K 45K 1002K 1032K 924K 59K 789K
Q4 927K 1038K 38K 580K 978K 864K 59K 784K 1142K 1091K 54K 984K 1129K 992K 63K 870K

Table 2.3: A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and location. The
measure displayed 1s dollars_sold.

Now, suppose that we would like to view the sales data with a third dimension. For instance, suppose we would
like to view the data according to time, item, as well as location. These 3-D data are shown in Table 2.3. The 3-D
data of Table 2.3 are represented as a series of 2-D tables. Conceptually, we may also represent the same data in the
form of a 3-D data cube, as in Figure 2.1.

Suppose that we would now like to view our sales data with an additional fourth dimension, such as supplier.
Viewing things in 4-D becomes tricky. However, we can think of a 4-D cube as being a series of 3-D cubes, as shown
in Figure 2.2. If we continue in this way, we may display any n-D data as a series of (n — 1)-D “cubes”. The data
cube 18 a metaphor for multidimensional data storage. The actual physical storage of such data may differ from its
logical representation. The important thing to remember is that data cubes are n-dimensional, and do not confine
data to 3-D.

The above tables show the data at different degrees of summarization. In the data warehousing research literature,
a data cube such as each of the above is referred to as a cuboid. Given a set of dimensions, we can construct a
lattice of cuboids, each showing the data at a different level of summarization, or group by (i.e., summarized by a
different subset of the dimensions). The lattice of cuboids is then referred to as a data cube. Figure 2.8 shows a
lattice of cuboids forming a data cube for the dimensions time, item, location, and supplier.
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location
(cities) _
Chicago 854 _~ 882 _~ 89 623
New York 1087~ 968 -~ 4q 872
Montreal 818 746 iz =01
V ancouver
698
Q1 | 605K | 825K | 14K | 400K 925
682" 1789
Q2 | 680 952 31 512 100" |
time 870
(quarters) 728 /
o3 812 1023 | 30 501 984
784
oa 927 1038 | 38 580
computer security
home phone
entertainment
item
(types)

Figure 2.1: A 3-D data cube representation of the data in Table 2.3, according to the dimensions #ime, item, and
location. The measure displayed 1s dollars_sold.

Jocation supplier = "SUP1" supplier = "SUP2" supplier = "SUP3"
(cities -~
Chicago
New York
Montreal
Vancouver ””/””7 / ”/””7 ””/””?

QL 605K | 825K | 14K | 400K

Q

time | __ | __ | =
(quarters)
Q3
Q4
computer security computer security computer security
home phone home phone home phone
entertainment entertainment entertainment
item item item
(types) (types) (types)

Figure 2.2: A 4-D data cube representation of sales data, according to the dimensions time, item, location, and
supplier. The measure displayed 1s dollars_sold.

The cuboid which holds the lowest level of summarization is called the base cuboid. For example, the 4-D
cuboid in Figure 2.2 is the base cuboid for the given time, item, location, and supplier dimensions. Figure 2.1 is a
3-D (non-base) cuboid for time, item, and location, summarized for all suppliers. The 0-D cuboid which holds the
highest level of summarization is called the apex cuboid. In our example, this is the total sales, or dollars_sold,
summarized for all four dimensions. The apex cuboid is typically denoted by all.

2.2.2 Stars, snowflakes, and fact constellations: schemas for multidimensional databases

The entity-relationship data model is commonly used in the design of relational databases, where a database schema
consists of a set of entities or objects, and the relationships between them. Such a data model is appropriate for on-
line transaction processing. Data warehouses, however, require a concise, subject-oriented schema which facilitates
on-line data analysis.

The most popular data model for data warehouses is a multidimensional model. This model can exist in the
form of a star schema, a snowflake schema, or a fact constellation schema. Let’s have a look at each of these
schema types.
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0 al 0-D (apex) cuboid

1-D cuboids

2-D cuboids

N .
location, supplier

3-D cuboids

item, location, supplier

item, item, location, supplier 4-D (base) cuboid

Figure 2.3: Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and supplier.
Each cuboid represents a different degree of summarization.

e Star schema: The star schema is a modeling paradigm in which the data warehouse contains (1) a large central
table (fact table), and (2) a set of smaller attendant tables (dimension tables), one for each dimension. The
schema graph resembles a starburst, with the dimension tables displayed in a radial pattern around the central

fact table.

Time Dimension Sales Fact Item Dimension
year — supplier_type
quarter time_key type
month , brand
day_of_week tem_key item_name
day branch_key item_key
time_key location_key . . '

' _ dollars sold Location Dimension
Branch Dimension units sold country
branch_type province_or_state
branch_name city
branch_key dreet

location key

Figure 2.4: Star schema of a data warehouse for sales.

Example 2.1 An example of a star schema for AllElectronics sales is shown in Figure 2.4. Sales are considered
along four dimensions, namely time, item, branch, and location. The schema contains a central fact table for
sales which contains keys to each of the four dimensions, along with two measures: dollars_sold and units_sold.

O

Notice that in the star schema, each dimension is represented by only one table, and each table contains a
set of attributes. For example, the location dimension table contains the attribute set {location_key, street,
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cily, province_or_state, couniry}. This constraint may introduce some redundancy. For example, “Vancou-
ver” and “Victoria” are both cities in the Canadian province of British Columbia. Entries for such cities in
the location dimension table will create redundancy among the attributes province_or_state and country, i.e.,
(.., Vancouver, British Columbia, Canada) and (.., Victoria, British Columbia, Canada). More-
over, the attributes within a dimension table may form either a hierarchy (total order) or a lattice (partial

order).

Snowflake schema: The snowflake schema 1s a variant of the star schema model, where some dimension tables
are normalized, thereby further splitting the data into additional tables. The resulting schema graph forms a
shape similar to a snowflake.

The major difference between the snowflake and star schema models is that the dimension tables of the snowflake
model may be kept in normalized form. Such a table is easy to maintain and also saves storage space because
a large dimension table can be extremely large when the dimensional structure is included as columns. Since
much of this space is redundant data, creating a normalized structure will reduce the overall space requirement.
However, the snowflake structure can reduce the effectiveness of browsing since more joins will be needed to
execute a query. Consequently, the system performance may be adversely impacted. Performance benchmarking
can be used to determine what is best for your design.

Time Dimension Sales Fact Item Dimension Supplier Dimension
year e supplier_key supplier_type
quarter | time key type supplier_key
month item_key brand
day_of week branch_key item_name
day — item_key
time key location_key _ . _

— dollars sold Location Dimension City Dimension
Branch Dimension units sold city key country
— Street province_or_state
branch_type location key city
branch_name city key
branch_key

Figure 2.5: Snowflake schema of a data warehouse for sales.

Example 2.2 An example of a snowflake schema for AllElectronicssales is given in Figure 2.5. Here, the sales
fact table is identical to that of the star schema in Figure 2.4. The main difference between the two schemas
is in the definition of dimension tables. The single dimension table for «fem in the star schema is normalized
in the snowflake schema, resulting in new ¢tem and supplier tables. For example, the «tem dimension table
now contains the attributes supplier_key, type, brand, item_name, and item_key, the latter of which is linked
to the supplier dimension table, containing supplier_type and supplier_key information. Similarly, the single
dimension table for location in the star schema can be normalized into two tables: new location and city. The
location_key of the new location table now links to the city dimension. Notice that further normalization can
be performed on province_or_state and country in the snowflake schema shown in Figure 2.5, when desirable.

O

A compromise between the star schema and the snowflake schema is to adopt a mixed schema where only
the very large dimension tables are normalized. Normalizing large dimension tables saves storage space, while
keeping small dimension tables unnormalized may reduce the cost and performance degradation due to joins on
multiple dimension tables. Doing both may lead to an overall performance gain. However, careful performance
tuning could be required to determine which dimension tables should be normalized and split into multiple
tables.

Fact constellation: Sophisticated applications may require multiple fact tables to share dimension tables.
This kind of schema can be viewed as a collection of stars, and hence is called a galaxy schema or a fact
constellation.
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Figure 2.6: Fact constellation schema of a data warehouse for sales and shipping.

Example 2.3 An example of a fact constellation schema is shown in Figure 2.6. This schema specifies two
fact tables, sales and shipping. The sales table definition is identical to that of the star schema (Figure 2.4).
The shipping table has five dimensions, or keys: time_key, item_key, shipper_key, from_location, and to_location,
and two measures: dollars_cost and units_shipped. A fact constellation schema allows dimension tables to be
shared between fact tables. For example, the dimensions tables for time, item, and location, are shared between
both the sales and shipping fact tables. a

In data warehousing, there is a distinction between a data warehouse and a data mart. A data warehouse
collects information about subjects that span the entire organization, such as customers, items, sales, assets, and
personnel, and thus its scope is enferprise-wide. For data warehouses, the fact constellation schema 1s commonly
used since 1t can model multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-wide. For data marts, the
star or snowflake schema are popular since each are geared towards modeling single subjects.

2.2.3 Examples for defining star, snowflake, and fact constellation schemas

“How can I define a multidimensional schema for my data?”

Just as relational query languages like SQL can be used to specify relational queries, a data mining query
language can be used to specify data mining tasks. In particular, we examine an SQL-based data mining query
language called DMQL which contains language primitives for defining data warehouses and data marts. Language
primitives for specifying other data mining tasks, such as the mining of concept/class descriptions, associations,
classifications, and so on, will be introduced in Chapter 4.

Data warehouses and data marts can be defined using two language primitives, one for cube definition and one
for dimension definition. The cube definition statement has the following syntax.

define cube {cube_name) [{dimension_list)] : (measure_list)
The dimension definition statement has the following syntax.

define dimension (dimension name) as ({attribute_or_subdimension_list})

Let’s look at examples of how to define the star, snowflake and constellations schemas of Examples 2.1 to 2.3
using DMQL. DMQL keywords are displayed in sans serif font.
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Example 2.4 The star schema of Example 2.1 and Figure 2.4 1s defined in DMQL as follows.

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)

The define cube statement defines a data cube called sales_star, which corresponds to the central sales fact table
of Example 2.1. This command specifies the keys to the dimension tables, and the two measures, dollars_sold and
units_sold. The data cube has four dimensions, namely {ime, item, branch, and location. A define dimension statement
is used to define each of the dimensions. ad

Example 2.5 The snowflake schema of Example 2.2 and Figure 2.5 is defined in DMQL as follows.

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier (supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city (city_key, city, province_or_state, country))

This definition is similar to that of sales_star (Example 2.4), except that, here, the item and location dimensions
tables are normalized. For instance, the item dimension of the sales_star data cube has been normalized in the
sales_snowflake cube into two dimension tables, item and supplier. Note that the dimension definition for supplier
is specified within the definition for item. Defining supplier in this way implicitly creates a supplier_key in the tem
dimension table definition. Similarly, the location dimension of the sales_star data cube has been normalized in the
sales_snowflake cube into two dimension tables, location and city. The dimension definition for city is specified within
the definition for location. In this way, a city_key 1s implicitly created in the location dimension table definition. 0O

Finally, a fact constellation schema can be defined as a set of interconnected cubes. Below 1s an example.
Example 2.6 The fact constellation schema of Example 2.3 and Figure 2.6 is defined in DMQL as follows.

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)

define cube shipping [time, item, shipper, from location, to_location]:
dollars_cost = sum(cost_in_dollars), units_shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type)
define dimension from_ocation as location in cube sales
define dimension to_location as location in cube sales

A define cube statement is used to define data cubes for sales and shipping, corresponding to the two fact tables
of the schema of Example 2.3. Note that the time, ttem, and location dimensions of the sales cube are shared with
the shipping cube. This is indicated for the time dimension, for example, as follows. Under the define cube statement
for shipping, the statement “define dimension time as time in cube sales” is specified. a

Instead of having users or experts explicitly define data cube dimensions, dimensions can be automatically gen-
erated or adjusted based on the examination of data distributions. DMQL primitives for specifying such automatic
generation or adjustments are discussed in the following chapter.



2.2. A MULTIDIMENSIONAL DATA MODEL 13

2.2.4 Measures: their categorization and computation

“How are measures computed?”

To answer this question, we will first look at how measures can be categorized. Note that multidimensional points
in the data cube space are defined by dimension-value pairs. For example, the dimension-value pairs in {time=“Q1”,
location="“Vancouver”, item=“computer”) define a point in data cube space. A data cube measure is a numerical
function that can be evaluated at each point in the data cube space. A measure value is computed for a given point
by aggregating the data corresponding to the respective dimension-value pairs defining the given point. We will look
at concrete examples of this shortly.

Measures can be organized into three categories, based on the kind of aggregate functions used.

¢ distributive: An aggregate function is distributive if it can be computed in a distributed manner as follows:
Suppose the data is partitioned into n sets. The computation of the function on each partition derives one
aggregate value. If the result derived by applying the function to the n aggregate values is the same as that
derived by applying the function on all the data without partitioning, the function can be computed in a
distributed manner. For example, count() can be computed for a data cube by first partitioning the cube
into a set of subcubes, computing count() for each subcube, and then summing up the counts obtained for
each subcube. Hence count() is a distributive aggregate function. For the same reason, sum(), min(), and
max () are distributive aggregate functions. A measure is distributive if it is obtained by applying a distributive
aggregate function.

e algebraic: An aggregate function is algebraic if it can be computed by an algebraic function with M argu-
ments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.
For example, avg() (average) can be computed by sum()/count() where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min N(), max N(), and standard deviation()
are algebraic aggregate functions. A measure 1s algebraic if it is obtained by applying an algebraic aggregate
function.

e holistic: An aggregate function is holistic if there is no constant bound on the storage size needed to describe
a subaggregate. That is, there does not exist an algebraic function with M arguments (where M is a constant)
that characterizes the computation. Common examples of holistic functions include median(), mode() (i.e.,
the most frequently occurring item(s)), and rank (). A measure is holistic if it is obtained by applying a holistic
aggregate function.

Most large data cube applications require efficient computation of distributive and algebraic measures. Many
efficient techniques for this exist. In contrast, it can be difficult to compute holistic measures efficiently. Efficient
techniques to approximate the computation of some holistic measures, however, do exist. For example, instead of
computing the exact median(), there are techniques which can estimate the approximate median value for a large
data set with satisfactory results. In many cases, such techniques are sufficient to overcome the difficulties of efficient
computation of holistic measures.

Example 2.7 Many measures of a data cube can be computed by relational aggregation operations. In Figure 2.4,
we saw a star schema for AllElectronics sales which contains two measures, namely dollars_sold and wunits_sold. In
Example 2.4, the sales_star data cube corresponding to the schema was defined using DMQL commands. “But, how
are these commands interpreted in order to generate the specified data cube?’

Suppose that the relational database schema of AllElectronics is the following:

time(time_key, day, day_of_week, month, quarter, year)

item(item key, item_name, brand, type)

branch(branch_key, branch_name, branch_type)

location(location_key, street, city, province_or_state, country)

sales(time_key, item_key, branch_key, location_key, number_of_units_sold, price)

The DMQL specification of Example 2.4 is translated into the following SQL query, which generates the required
sales_star cube. Here, the sum aggregate function is used to compute both dollars_sold and units_sold.
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select s.time_key, s.item_key, s.branch_key, s.location_key,
sum(s.number_of_units_sold * s.price), sum(s.number_of_units_sold)
from time t, item 1, branch b, location 1, sales s,
where s.time_key = t.time_key and s.item_key = i.item_key
and s.branch_key = b.branch_key and s.location_key = l.location_key
group by s.time_key, s.item_key, s.branch_key, s.location_key

The cube created in the above query is the base cuboid of the sales_star data cube. It contains all of the dimensions
specified in the data cube definition, where the granularity of each dimension is at the join key level. A join key
i1s a key that links a fact table and a dimension table. The fact table associated with a base cuboid i1s sometimes
referred to as the base fact table.

By changing the group by clauses, we may generate other cuboids for the sales_star data cube. For example,
instead of grouping by s.time_key, we can group by ¢.month, which will sum up the measures of each group by
month. Also, removing “group by s.branch_key” will generate a higher level cuboid (where sales are summed for all
branches, rather than broken down per branch). Suppose we modify the above SQL query by removing all of the
group by clauses. This will result in obtaining the total sum of dollars_sold and the total count of units_sold for the
given data. This zero-dimensional cuboid is the apex cuboid of the sales_star data cube. In addition, other cuboids
can be generated by applying selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 2.2.1. Each cuboid corresponds to a different degree of summarization of the given
data. ad

Most of the current data cube technology confines the measures of multidimensional databases to numerical data.
However, measures can also be applied to other kinds of data, such as spatial, multimedia, or text data. Techniques
for this are discussed in Chapter 9.

2.2.5 Introducing concept hierarchies

“What is a concept hierarchy?”

A concept hierarchy defines a sequence of mappings from a set of low level concepts to higher level, more
general concepts. Consider a concept hierarchy for the dimension location. City values for location include Vancouver,
Montreal, New York, and Chicago. Each city, however, can be mapped to the province or state to which i1t belongs.
For example, Vancouver can be mapped to British Columbia, and Chicago to Illinois. The provinces and states can
in turn be mapped to the country to which they belong, such as Canada or the USA. These mappings form a concept
hierarchy for the dimension location, mapping a set of low level concepts (i.e., cities) to higher level, more general
concepts (i.e., countries). The concept hierarchy described above is illustrated in Figure 2.7.

Many concept hierarchies are implicit within the database schema. For example, suppose that the dimension
location is described by the attributes number, street, city, province_or_state, zipcode, and country. These attributes
are related by a total order, forming a concept hierarchy such as “street < city < province_or_state < country’. This
hierarchy is shown in Figure 2.8a). Alternatively, the attributes of a dimension may be organized in a partial order,
forming a lattice. An example of a partial order for the fime dimension based on the attributes day, week, month,
quarter, and year is “day < {month <gquarter; week} < year” 1. This lattice structure is shown in Figure 2.8b).
A concept hierarchy that is a total or partial order among attributes in a database schema is called a schema
hierarchy. Concept hierarchies that are common to many applications may be predefined in the data mining
system, such as the the concept hierarchy for tszme. Data mining systems should provide users with the flexibility
to tailor predefined hierarchies according to their particular needs. For example, one may like to define a fiscal year
starting on April 1, or an academic year starting on September 1.

Concept hierarchies may also be defined by discretizing or grouping values for a given dimension or attribute,
resulting in a set-grouping hierarchy. A total or partial order can be defined among groups of values. An example
of a set-grouping hierarchy is shown in Figure 2.9 for the dimension price.

There may be more than one concept hierarchy for a given attribute or dimension, based on different user
viewpoints. For instance, a user may prefer to organize price by defining ranges for inezpensive, moderately_priced,
and expensive.

1Since a week usually crosses the boundary of two consecutive months, it is usually not treated as a lower abstraction of month.
Instead, it is often treated as a lower abstraction of year, since a year contains approximately 52 weeks.
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Figure 2.7: A concept hierarchy for the dimension location.

Concept hierarchies may be provided manually by system users, domain experts, knowledge engineers, or au-
tomatically generated based on statistical analysis of the data distribution. The automatic generation of concept
hierarchies is discussed in Chapter 3. Concept hierarchies are further discussed in Chapter 4.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we shall see in the following
subsection.

2.2.6 OLAP operations in the multidimensional data model

“How are concept hierarchies useful in OLAP?”

In the multidimensional model, data are organized into multiple dimensions and each dimension contains multiple
levels of abstraction defined by concept hierarchies. This organization provides users with the flexibility to view data
from different perspectives. A number of OLAP data cube operations exist to materialize these different views,
allowing interactive querying and analysis of the data at hand. Hence, OLAP provides a user-friendly environment
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Figure 2.8: Hierarchical and lattice structures of attributes in warehouse dimensions.



16

CHAPTER 2. DATA WAREHOUSE AND OLAP TECHNOLOGY FOR DATA MINING

(80- $1000]

(80-$200 ($200- 40 (3400- 500 ($600- 900 ($800- $L.01)

(90-$100] || ($100- $200]| | (8200- $300]| (8300 $400] ||(8400- $500] || (8500- $600] | | (8500~ $700]| | ($700- $800] | | (8800- $900] | |($900- $L.000]

Figure 2.9: A concept hierarchy for the attribute price.

for interactive data analysis.

Example 2.8 Let’s have a look at some typical OLAP operations for multidimensional data. Each of the operations

described below is illustrated in Figure 2.10. At the center of the figure is a data cube for AllElectronics sales. The
cube contains the dimensions location, time, and item, where location is aggregated with respect to city values, time

1s aggregated with respect to quarters, and item is aggregated with respect to item types. To aid in our explanation,

we refer to this cube as the central cube. The data examined are for the cities Vancouver, Montreal, New York, and

Chicago.

1. roll-up: The roll-up operation (also called the “drill-up” operation by some vendors) performs aggregation on

a data cube, either by climbing-up a concept hierarchy for a dimension or by dimension reduction. Figure 2.10
shows the result of a roll-up operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 2.7. This hierarchy was defined as the total order street < city < province_or_state <
country. The roll-up operation shown aggregates the data by ascending the location hierarchy from the level
of city to the level of country. In other words, rather than grouping the data by city, the resulting cube groups
the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are removed from the given cube.
For example, consider a sales data cube containing only the two dimensions location and time. Roll-up may
be performed by removing, say, the {ime dimension, resulting in an aggregation of the total sales by location,
rather than by location and by time.

. drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed data.

Drill-down can be realized by either stepping-down a concept hierarchy for a dimension or tntroducing additional
dimensions. Figure 2.10 shows the result of a drill-down operation performed on the central cube by stepping
down a concept hierarchy for time defined as day < month < quarter < year. Drill-down occurs by descending
the time hierarchy from the level of quarter to the more detailed level of month. The resulting data cube details
the total sales per month rather than summarized by quarter.

Since a drill-down adds more detail to the given data, it can also be performed by adding new dimensions to
a cube. For example, a drill-down on the central cube of Figure 2.10 can occur by introducing an additional
dimension, such as customer_type.

. slice and dice: The slice operation performs a selection on one dimension of the given cube, resulting in a

subcube. Figure 2.10 shows a slice operation where the sales data are selected from the central cube for the
dimension time using the criteria time= “Q2”. The dice operation defines a subcube by performing a selection
on two or more dimensions. Figure 2.10 shows a dice operation on the central cube based on the following
selection criteria which involves three dimensions: (location=“Montreal” or “Vancouver”) and (time=“Q1” or
“Q27) and (item=“home entertainment” or “computer”).

. pivot (rotate): Pivot (also called “rotate”) is a visualization operation which rotates the data axes in view

in order to provide an alternative presentation of the data. Figure 2.10 shows a pivot operation where the
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Figure 2.11: Modeling business queries: A starnet model.

item and location axes in a 2-D slice are rotated. Other examples include rotating the axes in a 3-D cube, or
transforming a 3-D cube into a series of 2-D planes.

5. other OLAP operations: Some OLAP systems offer additional drilling operations. For example, drill-
across executes queries involving (i.e., acrosss) more than one fact table. The drill-through operation makes
use of relational SQL facilities to drill through the bottom level of a data cube down to its back-end relational
tables.

Other OLAP operations may include ranking the top-N or bottom-N items in lists, as well as computing moving
averages, growth rates, interests, internal rates of return, depreciation, currency conversions, and statistical
functions.

OLAP offers analytical modeling capabilities, including a calculation engine for deriving ratios, variance, etc., and
for computing measures across multiple dimensions. It can generate summarizations, aggregations, and hierarchies
at each granularity level and at every dimension intersection. OLAP also supports functional models for forecasting,
trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful data analysis tool.

2.2.7 A starnet query model for querying multidimensional databases

The querying of multidimensional databases can be based on a starnet model. A starnet model consists of radial
lines emanating from a central point, where each line represents a concept hierarchy for a dimension. Each abstraction
level in the hierarchy is called a footprint. These represent the granularities available for use by OLAP operations
such as drill-down and roll-up.

Example 2.9 A starnet query model for the AllElectronics data warehouse is shown in Figure 2.11. This starnet
consists of four radial lines, representing concept hierarchies for the dimensions location, customer, item, and time,
respectively. Each line consists of footprints representing abstraction levels of the dimension. For example, the time
line has four footprints: “day”, “month”, “quarter” and “year”. A concept hierarchy may involve a single attribute
(like date for the time hierarchy), or several attributes (e.g., the concept hierarchy for location involves the attributes
street, city, province_or_state, and country). In order to examine the item sales at AllElectronics, one can roll up
along the #ime dimension from month to quarter, or, say, drill down along the location dimension from country to
city. Concept hierarchies can be used to generalize data by replacing low-level values (such as “day” for the time
dimension) by higher-level abstractions (such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values. ad
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2.3 Data warehouse architecture

2.3.1 Steps for the design and construction of data warehouses
The design of a data warehouse: A business analysis framework

“What does the data warchouse provide for business analysts?’

First, having a data warehouse may provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over competitors. Second, a
data warehouse can enhance business productivity since it i1s able to quickly and efficiently gather information which
accurately describes the organization. Third, a data warehouse facilitates customer relationship marketing since
it provides a consistent view of customers and items across all lines of business, all departments, and all markets.
Finally, a data warehouse may bring about cost reduction by tracking trends, patterns, and exceptions over long
periods of time in a consistent and reliable manner.

To design an effective data warehouse one needs to understand and analyze business needs, and construct a
business analysis framework. The construction of a large and complex information system can be viewed as the
construction of a large and complex building, for which the owner, architect, and builder have different views.
These views are combined to form a complex framework which represents the top-down, business-driven, or owner’s
perspective, as well as the bottom-up, builder-driven, or implementor’s view of the information system.

Four different views regarding the design of a data warehouse must be considered: the top-down view, the data
source view, the data warehouse view, and the business query view.

e The top-down view allows the selection of the relevant information necessary for the data warehouse. This
information matches the current and coming business needs.

e The data source view exposes the information being captured, stored, and managed by operational systems.
This information may be documented at various levels of detail and accuracy, from individual data source tables
to integrated data source tables. Data sources are often modeled by traditional data modeling techniques, such
as the entity-relationship model or CASE (Computer Aided Software Engineering) tools.

e The data warehouse view includes fact tables and dimension tables. It represents the information that is
stored inside the data warehouse, including precalculated totals and counts, as well as information regarding
the source, date, and time of origin, added to provide historical context.

e Finally, the business query view is the perspective of data in the data warehouse from the view point of the
end-user.

Building and using a data warehouse is a complex task since it requires business skills, technology skills, and
program management skills. Regarding business skills, building a data warehouse involves understanding how such
systems store and manage their data, how to build extractors which transfer data from the operational system
to the data warehouse, and how to build warehouse refresh software that keeps the data warchouse reasonably
up to date with the operational system’s data. Using a data warehouse involves understanding the significance of
the data it contains, as well as understanding and translating the business requirements into queries that can be
satisfied by the data warehouse. Regarding technology skills, data analysts are required to understand how to make
assessments from quantitative information and derive facts based on conclusions from historical information in the
data warehouse. These skills include the ability to discover patterns and trends, to extrapolate trends based on
history and look for anomalies or paradigm shifts, and to present coherent managerial recommendations based on
such analysis. Finally, program management skills involve the need to interface with many technologies, vendors and
end-users in order to deliver results in a timely and cost-effective manner.

The process of data warehouse design

“How can I design a data warehouse?’

A data warehouse can be built using a top-down approach, a bottom-up approach, or a combination of both. The
top-down approach starts with the overall design and planning. It is useful in cases where the technology is
mature and well-known, and where the business problems that must be solved are clear and well-understood. The
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bottom-up approach starts with experiments and prototypes. This is useful in the early stage of business modeling
and technology development. It allows an organization to move forward at considerably less expense and to evaluate
the benefits of the technology before making significant commitments. In the combined approach, an organization
can exploit the planned and strategic nature of the top-down approach while retaining the rapid implementation and
opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data warehouse may consist of
the following steps: planning, requirements study, problem analysis, warehouse design, data integration and testing,
and finally deployment of the data warehouse. Large software systems can be developed using two methodologies:
the waterfall method or the spiral method. The waterfall method performs a structured and systematic analysis
at each step before proceeding to the next, which is like a waterfall, falling from one step to the next. The spiral
method involves the rapid generation of increasingly functional systems, with short intervals between successive
releases. This is considered a good choice for data warehouse development, especially for data marts, because the
turn-around time is short, modifications can be done quickly, and new designs and technologies can be adapted in a
timely manner.

In general, the warehouse design process consists of the following steps.

1. Choose a business process to model, e.g., orders, invoices, shipments, inventory, account administration, sales,
and the general ledger. If the business process is organizational and involves multiple, complex object collec-
tions, a data warehouse model should be followed. However, if the process is departmental and focuses on the
analysis of one kind of business process, a data mart model should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level of data to be represented
in the fact table for this process, e.g., individual transactions, individual daily snapshots, etc.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions are time, item, customer,
supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are numeric additive quantities
like dollars_sold and units_sold.

Since data warehouse construction is a difficult and long term task, its implementation scope should be clearly
defined. The goals of an initial data warehouse implementation should be specific, achievable, and measurable. This
involves determining the time and budget allocations, the subset of the organization which is to be modeled, the
number of data sources selected, and the number and types of departments to be served.

Once a data warehouse is designed and constructed, the initial deployment of the warehouse includes initial
installation, rollout planning, training and orientation. Platform upgrades and maintenance must also be considered.
Data warehouse administration will include data refreshment, data source synchronization, planning for disaster
recovery, managing access control and security, managing data growth, managing database performance, and data
warehouse enhancement and extension. Scope management will include controlling the number and range of queries,
dimensions, and reports; limiting the size of the data warehouse; or limiting the schedule, budget, or resources.

Various kinds of data warehouse design tools are available. Data warehouse development tools provide
functions to define and edit metadata repository contents such as schemas, scripts or rules, answer queries, output
reports, and ship metadata to and from relational database system catalogues. Planning and analysis tools study
the impact of schema changes and of refresh performance when changing refresh rates or time windows.

2.3.2 A three-tier data warehouse architecture

“What is data warehouse architecture like?”

Data warehouses often adopt a three-tier architecture, as presented in Figure 2.12. The bottom tier is a ware-
house database server which is almost always a relational database system. The middle tier is an OLAP server
which is typically implemented using either (1) a Relational OLAP (ROLAP) model, i.e., an extended relational
DBMS that maps operations on multidimensional data to standard relational operations; or (2) a Multidimen-
sional OLAP (MOLAP) model, i.e., a special purpose server that directly implements multidimensional data and
operations. The top tier is a client, which contains query and reporting tools, analysis tools, and/or data mining
tools (e.g., trend analysis, prediction, and so on).
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Figure 2.12: A three-tier data warehousing architecture.

From the architecture point of view, there are three data warehouse models: the enterprise warchouse, the data
mart, and the virtual warehouse.

¢ Enterprise warehouse: An enterprise warehouse collects all of the information about subjects spanning the
entire organization. It provides corporate-wide data integration, usually from one or more operational systems
or external information providers, and is cross-functional in scope. It typically contains detailed data as well as
summarized data, and can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or beyond.
An enterprise data warehouse may be implemented on traditional mainframes, UNIX superservers, or parallel
architecture platforms. It requires extensive business modeling and may take years to design and build.

e Data mart: A data mart contains a subset of corporate-wide data that is of value to a specific group of
users. The scope is confined to specific, selected subjects. For example, a marketing data mart may confine its
subjects to customer, item, and sales. The data contained in data marts tend to be summarized.

Data marts are usually implemented on low cost departmental servers that are UNIX-, Windows/NT-, or
0S/2-based. The implementation cycle of a data mart is more likely to be measured in weeks rather than
months or years. However, it may involve complex integration in the long run if its design and planning were
not enterprise-wide.

Depending on the source of data, data marts can be categorized into the following two classes:

— Independent data marts are sourced from data captured from one or more operational systems or external
information providers, or from data generated locally within a particular department or geographic area.

— Dependent data marts are sourced directly from enterprise data warehouses.

e Virtual warehouse: A virtual warehouse is a set of views over operational databases. For efficient query
processing, only some of the possible summary views may be materialized. A virtual warehouse is easy to build
but requires excess capacity on operational database servers.

The top-down development of an enterprise warehouse serves as a systematic solution and minimizes integration
problems. However, it is expensive, takes a long time to develop, and lacks flexibility due to the difficulty in achieving
consistency and consensus for a common data model for the entire organization. The bottom-up approach to the
design, development, and deployment of independent data marts provides flexibility, low cost, and rapid return
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Figure 2.13: A recommended approach for data warehouse development.

of investment. It, however, can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to implement the warehouse in an
incremental and evolutionary manner, as shown in Figure 2.13. First, a high-level corporate data model is defined
within a reasonably short period of time (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among different subjects and potential usages. This high-level model, although it will need to
be refined in the further development of enterprise data warehouses and departmental data marts, will greatly reduce
future integration problems. Second, independent data marts can be implemented in parallel with the enterprise
warehouse based on the same corporate data model set as above. Third, distributed data marts can be constructed
to integrate different data marts via hub servers. Finally, a multi-tier data warehouse is constructed where the
enterprise warehouse is the sole custodian of all warehouse data, which is then distributed to the various dependent
data marts.

2.3.3 OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP

“What s OLAP server architecture like?”

Logically, OLAP engines present business users with multidimensional data from data warehouses or data marts,
without concerns regarding how or where the data are stored. However, the physical architecture and implementation
of OLAP engines must consider data storage issues. Implementations of a warehouse server engine for OLAP
processing include:

¢ Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in between a relational
back-end server and client front-end tools. They use a relational or extended-relational DBMS to store and
manage warehouse data, and OLAP middleware to support missing pieces. ROLAP servers include optimization
for each DBMS back-end, implementation of aggregation navigation logic, and additional tools and services.
ROLAP technology tends to have greater scalability than MOLAP technology. The DSS server of Microstrategy
and Metacube of Informix, for example, adopt the ROLAP approach?.

¢ Multidimensional OLAP (MOLAP) servers: These servers support multidimensional views of data
through array-based multidimensional storage engines. They map multidimensional views directly to data

?Information on these products can be found at www.informix.com and www.microstrategy.com, respectively.
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cube array structures. For example, Essbase of Arbor is a MOLAP server. The advantage of using a data
cube is that it allows fast indexing to precomputed summarized data. Notice that with multidimensional data
stores, the storage utilization may be low if the data set is sparse. In such cases, sparse matrix compression
techniques (see Section 2.4) should be explored.

Many OLAP servers adopt a two-level storage representation to handle sparse and dense data sets: the dense
subcubes are identified and stored as array structures, while the sparse subcubes employ compression technology
for efficient storage utilization.

¢ Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and MOLAP technology,
benefitting from the greater scalability of ROLAP and the faster computation of MOLAP. For example, a
HOLAP server may allow large volumes of detail data to be stored in a relational database, while aggregations
are kept in a separate MOLAP store. The Microsoft SQL Server 7.0 OLAP Services supports a hybrid OLAP

Server.

¢ Specialized SQL servers: To meet the growing demand of OLAP processing in relational databases, some
relational and data warehousing firms (e.g., Redbrick) implement specialized SQL servers which provide ad-
vanced query language and query processing support for SQL queries over star and snowflake schemas in a
read-only environment.

The OLAP functional architecture consists of three components: the data store, the OLAP server, and the user
presentation module. The data store can be further classified as a relational data store or a multidimensional data
store, depending on whether a ROLAP or MOLAP architecture i1s adopted.

“So, how are data actually stored in ROLAP and MOLAP architectures?’

As its name implies, ROLAP uses relational tables to store data for on-line analytical processing. Recall that
the fact table associated with a base cuboid 1s referred to as a base fact table. The base fact table stores data at
the abstraction level indicated by the join keys in the schema for the given data cube. Aggregated data can also be
stored in fact tables, referred to as summary fact tables. Some summary fact tables store both base fact table
data and aggregated data, as in Example 2.10. Alternatively, separate summary fact tables can be used for each
level of abstraction, to store only aggregated data.

Example 2.10 Table 2.4 shows a summary fact table which contains both base fact data and aggregated data. The
schema of the table is “(record_identifier (RID), item, location, day, month, quarter, year, dollars_sold (i.e., sales
amount))”, where day, month, quarter, and year define the date of sales. Consider the tuple with an RID of 1001.
The data of this tuple are at the base fact level. Here, the date of sales is October 15, 1997. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuple having an RID of 1001. Here,
the “Main Street” value for location has been generalized to “Vancouver”. The day value has been generalized to
all, so that the corresponding #zme value is October 1997. That is, the dollars_sold amount shown is an aggregation
representing the entire month of October 1997, rather than just October 15, 1997. The special value all is used to
represent subtotals in summarized data.

| RID | item | location | day | month | quarter | year | dollars_sold |
1001 | TV | Main Street | 15 10 Q4 1997 250.60
5001 | TV Vancouver all 10 Q4 1997 45,786.08

Table 2.4: Single table for base and summary facts.

O

MOLAP uses multidimensional array structures to store data for on-line analytical processing. For example, the
data cube structure described and referred to throughout this chapter is such an array structure.
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Most data warehouse systems adopt a client-server architecture. A relational data store always resides at the
data warehouse/data mart server site. A multidimensional data store can reside at either the database server site or
the client site. There are several alternative physical configuration options.

If a multidimensional data store resides at the client side, it results in a “fat client”. In this case, the system
response time may be quick since OLAP operations will not consume network traffic, and the network bottleneck
happens only at the warehouse loading stage. However, loading a large data warehouse can be slow and the processing
at the client side can be heavy, which may degrade the system performance. Moreover, data security could be a
problem because data are distributed to multiple clients. A variation of this option is to partition the multidimensional
data store and distribute selected subsets of the data to different clients.

Alternatively, a multidimensional data store can reside at the server site. One option is to set both the multidi-
mensional data store and the OLAP server at the data mart site. This configuration is typical for data marts that
are created by refining or re-engineering the data from an enterprise data warehouse.

A variation 1s to separate the multidimensional data store and OLAP server. That is, an OLAP server layer is
added between the client and data mart. This configuration is used when the multidimensional data store 1s large,
data sharing is needed, and the client is “thin” (i.e., does not require many resources).

2.3.4 SQL extensions to support OLAP operations

“How can SQL be extended to support OLAP operations?’

An OLAP server should support several data types including text, calendar, and numeric data, as well as data at
different granularities (such as regarding the estimated and actual sales per item). An OLAP server should contain a
calculation engine which includes domain-specific computations (such as for calendars) and a rich library of aggregate
functions. Moreover, an OLAP server should include data load and refresh facilities so that write operations can
update precomputed aggregates, and write/load operations are accompanied by data cleaning.

A multidimensional view of data is the foundation of OLAP. SQL extensions to support OLAP operations have
been proposed and implemented in extended-relational servers. Some of these are enumerated as follows.

1. Extending the family of aggregate functions.

Relational database systems have provided several useful aggregate functions, including sum(), avg(), count(),
min(), and max() as SQL standards. OLAP query answering requires the extension of these standards to in-
clude other aggregate functions such as rank(), N_tile(), median(), and mode(). For example, a user may
like to list the top five most profitable items (using rank()), list the firms whose performance is in the bottom
10% in comparison to all other firms (using N_tile()), or print the most frequently sold items in March (using
mode()).

2. Adding reporting features.

Many report writer softwares allow aggregate features to be evaluated on a time window. Examples include
running totals, cumulative totals, moving averages, break points, etc. OLAP systems, to be truly useful for
decision support, should introduce such facilities as well.

3. Implementing multiple group-by’s.

Given the multidimensional view point of data warehouses, it is important to introduce group-by’s for grouping
sets of attributes. For example, one may want to list the total sales from 1996 to 1997 grouped by item, by
region, and by quarter. Although this can be simulated by a set of SQL statements, it requires multiple scans
of databases, and is thus a very inefficient solution. New operations, including cube and roll-up, have been
introduced in some relational system products which explore efficient implementation methods.

2.4 Data warehouse implementation

Data warehouses contain huge volumes of data. OLAP engines demand that decision support queries be answered in
the order of seconds. Therefore, it is crucial for data warehouse systems to support highly efficient cube computation
techniques, access methods, and query processing techniques. “How can this be done?’, you may wonder. In this
section, we examine methods for the efficient implementation of data warehouse systems.
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Figure 2.14: Lattice of cuboids, making up a 3-dimensional data cube. Each cuboid represents a different group-by.
The base cuboid contains the three dimensions, city, item, and year.

2.4.1 Efficient computation of data cubes

At the core of multidimensional data analysis is the efficient computation of aggregations across many sets of dimen-
sions. In SQL terms, these aggregations are referred to as group-by’s.

The compute cube operator and its implementation

One approach to cube computation extends SQL so as to include a compute cube operator. The compute cube
operator computes aggregates over all subsets of the dimensions specified in the operation.

Example 2.11 Suppose that you would like to create a data cube for AllElectronics sales which contains the fol-
lowing: item, city, year, and sales_in_dollars. You would like to be able to analyze the data, with queries such as the
following:

1. “Compute the sum of sales, grouping by item and city.”
2. “Compute the sum of sales, grouping by item.”

3. “Compute the sum of sales, grouping by city’.

What 1s the total number of cuboids, or group-by’s, that can be computed for this data cube? Taking the
three attributes, city, tfem, and year, as three dimensions and sales_in_dollars as the measure, the total number
of cuboids, or group-by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are the
following: {(city, item, year), (city,item), (city, year), (item, year), (city), (item), (year), ()}, where () means that
the group-by is empty (i.e., the dimensions are not grouped). These group-by’s form a lattice of cuboids for the data
cube, as shown in Figure 2.14. The base cuboid contains all three dimensions, city, item, and year. It can return the
total sales for any combination of the three dimensions. The apex cuboid, or 0-D cuboid, refers to the case where
the group-by is empty. It contains the total sum of all sales. Consequently, it is represented by the special value all.

O

An SQL query containing no group-by, such as “compute the sum of total sales” is a zero-dimensional operation.
An SQL query containing one group-by, such as “compute the sum of sales, group by city” is a one-dimensional
operation. A cube operator on n dimensions is equivalent to a collection of group by statements, one for each subset
of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of the group by operator.

Based on the syntax of DMQL introduced in Section 2.2.3, the data cube in Example 2.11, can be defined as

define cube sales [item, city, year]: sum(sales_in_dollars)



