
Business Process with BPEL4WS: Learning
BPEL4WS, Part 6
Correlation, fault handling, and compensation

Level: Introductory

Rania Khalaf (rkhalaf@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center
William Nagy (nagy@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center

01 Mar 2003

The previous articles have covered the fundamentals of BPEL4WS, providing you with an understanding of the
activities defined and how they can be combined together using structured activities and the <link> construct.
In this article, we cover the advanced properties of the language that are essential to the definition and execution
of a business process. BPEL uses correlation to match returning or known customers with a long-running business
process, fault handling to recover from expected as well as unexpected faults, and compensation to "undo"
already committed steps in case something goes wrong in the middle of the process or, for example, a client
wishes to explicitly cancel a transaction.

Introduction

Now that you have learned the fundamental concepts of BPEL4WS, it is time to dive into some of the more advanced topics.
This article will provide you with an overview of message correlation, fault handling, and compensation as it applies to a
BPEL4WS environment.

Message correlation

Message correlation is the BPEL4WS mechanism which allows processes to participate in stateful conversations. It can be
used, for example, to match returning or known customers to long-running business processes. When a message arrives for a
Web service which has been implemented using BPEL, that message must be delivered somewhere -- either to a new or an
existing instance of the process. The task of determining to which conversation a message belongs, in BPEL's case the task of
locating/instantiating the instance, is what message correlation is all about.

In many distributed object systems, one component of the routing of a message involves examining the message for an explicit
instance ID which identifies the destination. Although the routing process is similar, BPEL instances are not identified by an
explicit instance field, but are instead identified by one or more sets of key data fields within the exchanged messages. For
example, an order number may be used to identify a particular instance of a process within an order fulfillment system. In
BPEL terms, these collections of data fields which identify the process instance are known as correlation sets.

Each BPEL correlation set has a name associated with it, and is composed of WSDL-defined properties. A property is a
named, typed data element which is defined within a WSDL document, and whose value is extracted from an instance of a
WSDL message by applying a message-specific XPath expression. In WSDL, a propertyAlias defines each such mapping. The
mappings are message specific, hence a single property can have multiple propertyAliases associated with it. For example, a
WSDL document might say that property name corresponds to part username of WSDL message loginmsg and to part
lastname of ordermsg. Together, the properties and propertyAliases provide BPEL authors with a way to reference a single,
logical piece of information in a consistent way, even if it might appear in different forms across a set of messages.

Using correlation sets

To use a correlation set, a BPEL author defines the set by enumerating the properties which comprise it, and then references
that set from receive, reply, invoke, or pick activities. A BPEL runtime uses the definition and references to determine the
interesting pieces of information that it should examine during different points of executing the process. Each instance of the
process has an instantiation of each of the correlation sets which are defined for the process. Each of these instantiations is

Business Process with BPEL4WS: Learning BPEL4WS, Part 6 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol6/...

1 of 4 19.12.2008 10:11

initialized exactly once during the execution of the process instance, and is subsequently only used during comparisons
involving incoming and outgoing messages. If an attempt is made to reinitialize a correlation set, or to use one which has not
been initialized, then the runtime will throw a bpws:correlationViolation. Extracting values for a correlation set referenced by
an activity, either for initialization or comparison purposes, involves applying the processAlias, which corresponds to the
particular WSDL message being examined, for each of the properties which comprise the referenced correlation set.

As receive and pick activities provide the entry points into a process, correlation sets often appear on them to enable message-
to-instance routing. If a correlation set appears on a receive or pick activity, and it does not have the initiation attribute set to
'yes', then when a message arrives for that particular receive or pick, the values of the properties which comprise the
correlation set are extracted from the incoming message and compared to the values stored for the same correlation set in all of
the instances of that process, and the message is routed to the instance which has matching values. Similarly, correlation sets
on reply and invoke activities, which deal with outbound operations, are often used to validate that outgoing messages contain
data which is consistent with the data contained within specified correlation set instances. For example, if a correlation set
appears on a reply activity, and it does not have the initiation attribute set to 'yes', then the values of the properties which
comprise the correlation set are extracted from the outgoing message and compared to the values store for the instance's
instantiated correlation set. If the values in the message which correspond to the correlation set are found to be different from
those contained within the instance's correlation set, the runtime throws a bpws:correlationViolation. On all of the activities on
which correlation sets may appear, the initiation attribute indicates to the runtime that the correlation set should be initialized
using the values contained within the message which is input to the current activity. Correlation sets which appear within
invoke activities have an additional attribute, pattern, which specifies during the execution of the invoke activity the
correlation set that is to be applied. The pattern attribute may have a value of 'in', meaning that the correlation set is to be
applied when the response comes back for the invocation, 'out', meaning that the correlation set is to be applied when the
invocation is made, or 'both', which naturally means that it is to be applied during both phases.

Multiple correlation sets, some of which are initialized and some of which are used for comparison, can appear on a single
activity. The current BPEL specification does not define the semantics of locating an instance based on multiple correlation
sets.

Error handling and roll-back

When executing a BPEL process, errors might occur either in the services being invoked or within the process itself. BPEL
provides a mechanism to explicitly catch such errors and handle them by executing subroutines specified in fault handler
elements. Additionally, activities that have completed might later need to be undone because they form part of a longer
transaction that had to be aborted. Compensation handlers allow the creator of the process to define certain actions that should
be taken to undo a unit of work and restore the data to what it was before that work was done.

The handling of such situations usually affects a set of activities that are associated with each other. In BPEL, this is done by
enclosing them in the scope structured activity. A scope provides the context for the activities nested within it, and it is where
fault and compensation handlers are defined. Therefore, you can think of the scope as encapsulating a possibly compensatable,
recoverable unit of work.

The entire process provides the global scope: it contains one main activity and allows the specification of fault and
compensation handlers. It is also able to define data containers and correlation sets. However, the future directions of BPEL
state that all scopes will be able to do the same, and that containers defined in a scope will be visible only to activities nested
within that scope.

In order to understand how a scope catches or propagates a fault that originated within it, we first recap the life cycle of a
BPEL activity. An activity remains dormant, waiting to be activated by its parent activity and its incoming links. Once it gets
control from its parent, and all its incoming links come in, it can evaluate its join condition at which point one of two things can
happen: it either throws a joinFailure fault because the join condition was not satisfied, or it runs. Assuming the latter, after it
has run successfully, it ends by evaluating and firing all its outgoing links.

On the other hand, the activity might fault while it is running because it was an invocation that returned a fault, one of the
built-in BPEL faults occurred while it was executing, or because it is a throw activity. In this case, it notifies the scope it
belongs to. Upon receiving a fault, the scope must stop all its nested activities. One other reason can cause an activity not to
run successfully; it might never receive all its links or control from its parent. For example, this will happen to an activity in

Business Process with BPEL4WS: Learning BPEL4WS, Part 6 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol6/...

2 of 4 19.12.2008 10:11

the same scope as the one that faulted but that was slated to run later on, or to an activity that is a branch of a switch statement
that was never taken. In both of these cases where an activity cannot successfully run and complete, it needs to send out all its
outgoing links with a negative value.

Handling faults

BPEL includes the ability to catch and handle errors at different levels of activity nesting. A fault handler can be defined on
any scope and either bound to a particular kind of fault (defined by the fault's qualified name, or its message type) or to any
faults not caught by a more specific handler. A handler simply contains an activity that will run in case an error occurs. For
example, it might contain a reply activity that notifies a partner that an error has occurred.

As noted earlier, the first thing a scope does once it receives a fault is to stop all its nested activities. In the default case, the
scope stops its activities, and then rethrows the fault to its parent and so on until the top-level process is reached. When a
scope rethrows the fault, the scope itself then ends abnormally, and it sends out all its outgoing links with a negative value.
However, handlers allow any scope to intercept a fault and take appropriate action. Once a fault is handled in a scope, the
scope ends normally with the values of its outgoing links being evaluated as usual. This is illustrated in Figure 1.

Figure 1. Handling faults

In this figure, the activity faults because one of its links came in with a negative value and its join condition is a boolean and
of the link values. It therefore throws the fault to its scope, and you see all the links leaving it go negative. The scope itself has
no handler for the fault, so it rethrows the fault. The next scope up is the process itself. You see the links of the inner scope get
negative values because it could not take care of the problem itself and so terminated abnormally. The process has a handler,
takes care of the fault, and completes normally. It follows that if the handler had been on the inner scope, the links leaving it
would have been evaluated regularly, and the fault would not have been thrown to the process.

The invoke activity exhibits a short-cut mechanism for defining handlers directly on its definition. The behavior is effectively
that it becomes wrapped in a scope that will have these specified handlers.

BPEL defines a set of built-in faults that notify of errors such as assignment type mismatches, a scope forcing the termination
of a nested scope, and activating a reply activity that doesn't have a matching receive activity. The BPEL engine is responsible
for detecting these faults and throwing them to the appropriate scope.

Compensation

While a business process is running, it might be necessary to undo one of the steps that have already been successfully
completed. The specification of these undo steps are defined using compensation handlers that can be defined at the scope
level. Each handler contains one activity which is run when a scope needs to be compensated.

The activities within such a handler must see the container data to be that which it was when the scope completed. Due to
activities sharing containers and loops caused by while activities, completing scopes that are compensation-enabled must save
a snapshot of the data for the handler to possibly use later.

Once a scope completes successfully, its compensation handler becomes ready to run. This can happen in either of two cases:
explicit or implicit compensation. Explicit compensation occurs upon the execution of a compensate activity. This activity
may occur anywhere, and refers to the name of the scope that it wants compensated. Scopes that might be rolled back in this
manner must therefore be named. BPEL further specifies that names of scopes must be unique within a BPEL process. When a

Business Process with BPEL4WS: Learning BPEL4WS, Part 6 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol6/...

3 of 4 19.12.2008 10:11

compensate activity is reached, it runs the compensation handler on the specified scope.

On the other hand, implicit compensation occurs when faults are being handled and propagated. Consider the scenario in which
a scope A contains a compensatable scope B that has completed normally, but then another nested activity in A throws a fault.
Implicit compensation ensures that whatever happened in scope B gets undone by running its compensation handler. Therefore,
implicit compensation of a scope goes through all its nested scopes and runs their compensation handlers in reverse order of
completion of those scopes.

Conclusion

In this article we have covered the advanced concepts of correlation and fault handling, including compensation. The next
article will provide a runnable example that illustrates both the use of correlation for matching messages to the appropriate
instances, as well as the use of a fault handler to catch and take care of errors in the process.

Resources
Participate in the discussion forum.

Please note that this articles refers to version 1.0 of the BPEL4WS specification. The latest version, BPEL4WS1.1, is
now available, and an article describing the key differences between the two specifications will be available shortly.

Download the Business Processes for Web Services Java Runtime from alphaWorks.

Read the previous installments of the Business Process with BPEL4WS column.

About the authors

Rania Khalaf is a software engineer in the Component Systems group at the IBM T.J. Watson Research Center. She joined
IBM in 2001 after having completed her Bachelors and MEng degrees from MIT. Rania is a co-author of the IBM BPEL4WS
engine, BPWS4J, available from alphaWorks. You can contact Rania at rkhalaf@watson.ibm.com.

William A. Nagy is a software engineer in the Component Systems group at the IBM T.J. Watson Research Center. He is
co-author of WS-Inspection and co-developer of BPWS4J, Apache SOAP, WSTK, and WSGW. He holds a Masters Degree in
Computer Science from Columbia University. You can contact William at nagy@watson.ibm.com.

Share this....

Digg this story del.icio.us Slashdot it!

Business Process with BPEL4WS: Learning BPEL4WS, Part 6 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol6/...

4 of 4 19.12.2008 10:11

