Business Process with BPEL4WS: Learning BPELAWS, Part 7

1of7

Business Process with BPEL4AWS: Learning
BPEL4AWS, Part 7

Adding correlation and fault handling to a process

Level: Introductory

Rania Khalaf (rkhalaf@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center
William Nagy (nagy@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center

22 Apr 2003

In the previous article we examined correlation and fault handling in BPEL4WS. Now, we are going to extend the
simple BPEL4AWS process that we have been working with in the previous articles by adding the ability to
communicate with a pre-existing process instance and to capture faults which may occur during its execution.

Introduction

Having explained correlation and fault handling in BPELAWS in the previous column of this series, we now add these
capabilities to the loan approval sample we have been working with to illustrate their use. In the scenario shown below, if a
client is approved for a loan he may send a request to actually obtain that loan. Correlation is used to make sure that the

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

second request goes to the correct process instance. Fault handling will be added to catch an explicitly thrown error that signals
that the client is trying to obtain a loan for an amount larger than the one that was approved. If such a fault is caught, a reply is
sent back describing the problem. We also show the effect of error handling with nested scopes and its effects on the links that

leave a scope that has handled its error, as well as one that was not able to do so and had to rethrow the fault to its enclosing
scope.

Obtaining the loan: adding correlation

To demonstrate correlation (and in the next section, fault handling) we're going to extend our loan processing example by
adding the ability for the client to submit a request to actually obtain the loan that they have been approved for. We'll add a
<receive> activity to accept the request to obtain the loan, and a <reply> activity to acknowledge it has been obtained.
The resulting flow is shown in Figure 1.

Figure 1. Adding activities to demonstrate correlation

<PIOCEEES
ICJIaw::-

riskAssassmentPT a<10000 leanApprovalPT

T e —
iy —————l <invoke=]
=TT T

A,
= (=a s =]
risk="hw &_J_ 'iubri]rL-}

accepl="yes"

[=reply= |
- 4

E &

Now we need a way to make sure that the request to obtain the loan arrives at the same process instance that provided the
initial approval -- this is where correlation comes into play. In order to correlate messages, we need to define a

19.12.2008 10:13

Business Process with BPEL4WS: Learning BPELAWS, Part 7 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

2 of 7

<correlationSet>. Definition of the <correlationSet> requires that we know what WSDL properties we want to
correlate on, so the first thing that we need to do is to define the <property=>ies. In our case, we are going to assume that the
first and last names of the requestor will give us a unique key for a process instance, and so we are going to create two
<property>ies based on that assumption, applicantFirstName and applicantLastName. Next, we need to define the
<propertyAlias>es for those <property>ies so that we can extract the necessary values from the messages that have
been transmitted. We need to initialize the correlation set before the second <receive> activity, and we could conceivably
do so in either one of the <invoke> activities, in the first <receive> activity, or in the first <reply> activity. The
approval message does not have the correct information in it, so we can rule out the first <reply>. We don't always make it
to both <invoke> activities, so the best place to initialize the correlation set will be on the first <receive>. As it happens,
both <receive>s have the same WSDL message as input, so we will only need to define two <propertyAl ias>es, one
for each of the <property>ies. This is shown in Listing 1.

Listing 1. Use of propertyAlias

<bpws:property name="applicantFirstName" type="'xsd:string"/>
<bpws:property name="applicantLastName" type='"xsd:string"/>

<bpws:propertyAlias propertyName="Ins:applicantFirstName"
messageType=
"loandef:creditinformationMessage™ part="firstName"™ query=
"/firstName'/>

<bpws:propertyAlias propertyName="Ins:applicantLastName"
messageType=
"loandef:creditInformationMessage™ part="name"™ query=""/name"/>

<portType name=""loanApprovalPT">
<operation name="obtain'>
<input message="'loandef:creditinformationMessage'/>
<output message="‘apns:approvalMessage'/>
</operation>
</portType>

<slnk:serviceLinkType name="loanApprovalLinkType'>
<slnk:role name="approver'>
<portType name="apns:loanApprovalPT"/>
<portType name="Ins: loanApprovalPT"/>
</slnk:role>
</slnk:servicelLinkType>

Once we have defined the <property=>ies in the WSDL file, we can define the <correlationSet> in the BPEL
document and set up its initialization and usage. We are going to add a new <correlationSet> called
loanldentifier, add the <correlationSet> to the first <receive> and place the initiation attribute on it with a
value of 'yes' to indicate that we want the correlation set to be initialized at that point, and also add the <correlationSet>
to the second <receive> so that it will be used to determine the correct instance to route the message to. This is shown in

Listing 2.

Listing 2. correlationSet
<containers>
<container name="request' messageType=""loandef:creditinformationMessage'/>
<container name=
""acceptanceRequest” messageType=""loandef:creditlnformationMessage/>
<container name="'riskAssessment' messageType="‘asns:riskAssessmentMessage'/>
<container name="approval Info" messageType="‘apns:approvalMessage'/>
<container name="error" messageType=""loandef: loanRequestErrorMessage'/>
</containers>

<correlationSets>
<correlationSet name="loanldentifier'™ properties=
“"Ins:applicantFirstName Ins:applicantLastName"/>

19.12.2008 10:13

Business Process with BPEL4WS: Learning BPELAWS, Part 7

30f7

</correlationSets>

<reply name=""initial-reply" partner='"customer"
portType="apns: loanApprovalPT" operation=""approve' container="approval Info'>
<target linkName="'setMessage-to-reply'/>
<target linkName="approval-to-initial-reply'/>
<source linkName="reply-to-receive”
transitionCondition=
"bpws:getContainerData("approvallnfo®, "accept")="yes""/>
</reply>

<receive name="acceptance-receive"
partner="customer' portType=
"Ins: loanApprovalPT" operation=
"obtain™ container="acceptanceRequest'>
<target linkName="reply-to-receive'/>
<source linkName="'receive-to-grant"/>
<correlations>

<correlation set="loanldentifier"/>

</correlations>

</receive>

<reply name="grant-reply" partner="customer"
portType="Ins:loanApprovalPT" operation=
"obtain" container="approvallnfo'>
<target linkName="'receive-to-grant"/>
</reply>

That's all that we need to do to enable correlation in our example. Now, whenever a message arrives for the second
<receive>, the applicantFirstName and appl icantLastName property values will be extracted and compared
against the values stored within all of the instances of the process, and the message will be routed to the instance which has the
matching values.

Error notification: using fault handlers

In order to show an interesting fault handling example, we will introduce a nested scope with an outgoing link. This scope will
wrap the receive/reply/throw activities added in the previous section. Since a scope may only contain one activity, we will first
wrap the three activities in a <Flow>. The second addition is a link from this scope to an <empty> activity whose purpose is
to show how the links are affected depending on whether or not a fault is caught and what scope level it was caught at.

Finally, we add a fault handler on our new scope. The idea is that if the customer tries to obtain a loan that is higher than the
one they have been approved for, they should be notified. This can be achieved using a fault handler with an <assign> that
puts an error message in a container, and a <reply> that sends that message back to the customer. The two will be enclosed
in a <sequence> so that they happen one after the other. The resulting flow is shown in Figure 2.

Figure 2. Adding a fault handler on a nested scope

19.12.2008 10:13

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

Business Process with BPEL4WS: Learning BPELAWS, Part 7 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

4 of 7

This is added to the BPEL file in Listing 3, with the new code in blue, and the existing receive/reply/throw in black. You will
also need to add the last link (scope-to-empty) definition along with the others. Note that in the fault handler, we catch the same
fault as that declared in the throw activity. A fault container is specified, which holds the error message. However, in the
WSDL, the error message consists of an integer which contains the error code. We would rather send the customer a
meaningful string. Therefore, we can reuse the approval Info container as shown in the <assign> below.

Listing 3. BPEL file

<scope name=''new-scope'’>

<source linkName="'scope-to-empty'/>
<faultHandlers>

<catch faultName=""Ins:loanProcessFault'" faultContainer="error">
<sequence name=""fault-sequence">
<assign>
<copy>
<from expression=""invalid request: amount too high®"/>
<to container="approvallnfo" part="accept'/>
</copy>
</assign>
<reply partner="customer' portType="Ins:loanApprovalPT"
operation=""obtain’ container="approvallnfo” faultName=
"Ins:loanProcessFault"/>

</sequence>
</catch>
</faultHandlers>

<flow name="inner-flow">
<receive name="‘acceptance-receive' partner="customer"
portType="Ins: loanApprovalPT" operation="obtain" container=
"acceptanceRequest''> ... </receive>
<reply name="grant-reply" partner="customer"
portType="Ins: loanApprovalPT" operation="obtain" container=

"approvalInfo"> ... </reply>
<throw name="grant-failure" faultName="Ins:loanProcessFault'> ... </throw>
</flow>

</scope>

<empty name="the-last-one'>
<target linkName=""scope-to-empty'/>
</empty>

19.12.2008 10:13

Business Process with BPEL4WS: Learning BPELAWS, Part 7 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

Now let's consider what should take place once this runs. Say a client asks for a $200 loan and gets the approval. After the
approval is sent the "new-scope" starts, makes its fault handler ready, and starts the inner flow. The receive activates and the
process waits for the client to obtain the loan. The client then asks to obtain the loan, but puts in $400 for the amount. The link
from the <receive> to the <reply> goes negative and, because of the suppression of join failures the <reply> quietly
disables. The link from the <receive> to the <throw> goes positive and the fault is thrown.

Once the fault is thrown, all activities in the scope have to stop. In this case none are running anyway. Then the inner scope
gets the fault and checks to see whether it has a handler for it. It does. The handler activates, and runs the short sequence that
sends the client the reply "invalid request: amount too high." The handler completes, and the scope completes normally: the
link from the scope to the empty activity evaluates to true and the empty activity runs. The process completes.

Consider for a moment the case that the fault handler was actually at the process level instead of on the inner scope. What
would happen then? The inner scope would get the fault, stop its activities, realize it can't handle it, and rethrow it up to its
parent scope which in this case is the actual process. Now the fault is coming out of the inner scope, and its link to the empty
activity goes negative. The <empty> does not run. The process would catch the fault, send the reply as above and the
process would end normally.

Running the processes

As with our earlier articles, if you want to run the processes you'll need to download and install the BPWS4J engine available
from alphaWorks (see Resources). See also the Resources section to download the zip file with the code examples described
below.

Because the samples use a modified client to access the additional functionality, you'll need to compile that before you can
invoke the processes. Place the client source (Customer.java) in a directory called samples/dwsample, make sure that the
soap.jar from the BPWSA4J release's reqlib directory is in your classpath, and compile away. You can use
LoanApprovalSample.sh or LoanApprovalSample.cmd to execute the client, just make sure that the classloader can find the
samples/dwsample/Customer.class (e.g. add "." to your classpath if you are executing the script from the parent directory of
samples/dwsample.)

This version of the client requires an extra parameter, either ‘approve’ to gain initial approval for the loan (this makes it
perform identically to the older client) or ‘obtain’ to obtain a loan that you have already been approved for. Remember that
we're correlating based on the first and last names, so you'll need to use the same values in both your ‘approve’ and ‘obtain’
requests.

Note that both of our scenarios use the same services (i.e. all of the WSDL files except those belonging to the process itself)
and the same client to test the functionality. We have broken the process modification down into two parts to make it easier to
understand the changes. However, both processes have the same name, so if you run the first scenario you will have to
undeploy it before you can run the second.

To run the examples, you'll need to follow the instructions for running the loan approval sample in the BPWS4J documentation,
substituting the files included here when appropriate. Below is a list of BPEL and WSDL files for each scenario, along with
some comments on how to test the functionality using the client.

Remember, if you would like to see what's going on behind the scenes, you'll need to edit the log4j.properties file in the
webapps/bpws4j/WEB-INF/classes directory and set the log4j.rootLogger to DEBUG.

Correlation example
Use the files loanapprovalcorr.bpel and loanapprovalcorr.wsdl.

Deploy the process, and run the client as described above, first to get a loan approved and then to obtain the loan. Keep the
parameters (first name, last name, amount) the same for both requests. If you've turned logging on, you will see something like
the following when you try to obtain the loan (assuming that you were approved for it of course.):

DEBUG [correlation] Testing correlation set: loanldentifier
DEBUG [correlation] Testing correlation information:

50f7 19.12.2008 10:13

Business Process with BPEL4WS: Learning BPELAWS, Part 7 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

PropertyValue[name:{http://loans.org/wsdl/loan-approval}applicantFirstName

value: [JROMString: http://loans.org/wsdl/loan-approval :applicantFirstName: John]]
DEBUG [correlation] Testing correlation information:
PropertyValue[name:{http://loans.org/wsdl/loan-approval }applicantLastName

value: [JROMString: http://loans.org/wsdl/loan-approval :applicantLastName: Doe]]
DEBUG [correlation] Testing correlation information: Match found

If you try to obtain the loan a second time (without being re-approved), you should see something like the following in the logs:

DEBUG [correlation] Testing correlation set: loanldentifier

DEBUG [correlation] Testing correlation information:
PropertyValue[name:{http://loans.org/wsdl/loan-approval}applicantFirstName
value: [JROMString: http://loans.org/wsdl/loan-approval:applicantFirstName: John]]
DEBUG [correlation] Testing correlation information:
PropertyValue[name:{http://loans.org/wsdl/loan-approval }applicantLastName
value: [JROMString: http://loans.org/wsdl/loan-approval :applicantLastName: Doe]]
DEBUG [correlation] Testing correlation information: Match not found

INFO [process] An existing process instance was not found

WARN [process] Neither a flow instance, nor a valid

instance creation receive could be found

You will get that message, because the obtain message is trying to access a process that has already terminated.
Fault handling example
Use the files loanapprovalfault.bpel and loanapprovalfault.wsdl.

Deploy the process (making sure that you undeploy the previous one first if you've just run it), and run the client to get a loan
approved. Once the loan has been approved, run the client once more, but this time try to obtain more than you have been
approved for. The log should say something like the following, and the client should get an exception back from the server:

DEBUG [flow] Event channel com.ibm.cs.bpws.runtime.events.EventChannel@5dd34bf7
is processing event Fault event named
{http://loans.org/wsdl/loan-approval}loanProcessFault
from source Activity grant-failure with parent named grant-failure and
enclosing scope named grant-failure

DEBUG [flow] Container error getting message null

DEBUG [flow] Found fault handller Activity fault-sequence with parent named

new-scope and enclosing scope named new-scope

DEBUG [base] Scope fault-sequence is running

DEBUG [flow] Starting sequence fault-sequence Activity

DEBUG [base] Sequence fault-sequence is running

DEBUG [flow] Sequence fault-sequence about to run null

DEBUG [base] Scope null is running

DEBUG [base] Assign null is running

DEBUG [flow] evaluating condition for link receive-to-grant

DEBUG [flow] about to

eval condition bpws:getContainerData("acceptanceRequest”, “"amount-®)
<= bpws:getContainerData("request”, “amount®)

DEBUG [flow] about to fire link event receive-to-grantfalse

DEBUG [flow] Event channel com.ibm.cs.bpws.runtime.events.EventChannel@5c984bf7

is processing event
com. ibm.cs._bpws.runtime.events.LinkEvent@43e68bea

DEBUG [flow] Process loanApprovalProcess running; waiting for event

DEBUG [bus] Processing request: [BPWSBus.BUSRequestAssign assignSrc=

com. ibm.cs.bpws.model .FromImpl@2c674be8
assignDest =com.ibm.cs.bpws.model .Tolmpl@2f3ccbe8 activity =
Activity null with parent named

null and enclosing scope named null

clientData com.ibm.cs.bpws.runtime.AssignRT$Assignlinfo@43078bea callback =

Activity loanApprovalProcess
with no parent and no enclosing scope

Ouch, the call failed:

Fault Code = SOAP-ENV:Client

Fault String = An error occurred while processing the message.

Fault =

[Attributes={}] [faultCode=SOAP-ENV:Client] [faultString=

An error occurred while processing the message.]
[faultActorURI=null] [DetailEntries=[(0)=

6 of 7 19.12.2008 10:13

Business Process with BPEL4WS: Learning BPELAWS, Part 7 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol7/...

[name=accept] [type=class java.lang.String]
[value=invalid request: amount too high] [encodingStyleURI=
null]]] [FaultEntries=]

The other WSDL files that are used for both examples are loanapprover.wsdl, loanassessor.wsdl and loandefinitions.wsdl.

Next time

In the next article in this series, we will look at the switch and pick activities, and at compensation.

Download
Name Size Download method
ws-bpelcol7.zip 9KB HTTP

» Information about download methods

Resources

e Participate in the discussion forum.

¢ Please note that this articles refers to version 1.0 of the BPELAWS specification. The latest version, BPELAWS1.1, is
now available, and an article describing the key differences between the two specifications will be available shortly.

e Download the BPWS4J engine from alphaWorks.

¢ Download the zip file with the code samples.

About the authors

Rania Khalaf is a software engineer in the Component Systems group at the IBM T.J. Watson Research Center. She joined
IBM in 2001 after having completed her Bachelors and MEng degrees from MIT. Rania is a co-author of the IBM BPEL4WS
engine, BPWS4J, available from alphaWorks. You can contact Rania at rkhalaf@watson.ibm.com.

William A. Nagy is a software engineer in the Component Systems group at the IBM T.J. Watson Research Center. He is
co-author of WS-Inspection and co-developer of BPWS4J, Apache SOAP, WSTK, and WSGW. He holds a Masters Degree in
Computer Science from Columbia University. You can contact William at nagy @watson.ibm.com.

Share this....

5 Digg this story a del.icio.us J+ Slashdot it!

7 of 7 19.12.2008 10:13

