
Business Process with BPEL4WS: Learning
BPEL4WS, Part 5
Adding links and manipulating data

Level: Introductory

Matthew Duftler (duftler@us.ibm.com), Software Engineer, IBM TJ Watson Research Center
Francisco Curbera (curbera@us.ibm.com), Manager Component Systems Group, IBM TJ Watson Research Center
Rania Khalaf (rkhalaf@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center

11 Mar 2003

The previous example in Part 2 of this series showed how to build a simple BPEL4WS process that invokes a
web service. This article takes that example and expands it into the loan approval process that is included in the
BPEL4WS specification and the BPWS4J samples, illustrating the use of links, conditions, and the <assign>
activity. Links connect activities together, and allow the specification of a condition on each that determines
whether or not that link should be followed. Conditions in BPEL4WS are XPath expressions, and this article
shows how they can incorporate the process's container data. The <assign> activity can be used to copy data
into a container when the data is not copied directly as the result of an <invoke>.

Introduction

This article will expand the process we created earlier into the loan approval sample that is in the BPEL4WS specification and
the BPWS4J samples. It illustrates two core capabilities for defining choreographies: defining flow of control using guarded
links, and manipulating data with the <assign> activity. We assume that you have read and understood the prior example,
and we take you forward from there. As with the earlier example, we will conclude by describing how the process will run, and
the results of running it in the BPWS4J engine.

We will show you a process that handles the same loan request -- a customer sends a request for a loan, the request gets
processed, and the customer finds out whether the loan was approved. Initially, the middle step consisted of simply invoking a
financial institution's Web service and sending its reply back to the customer. Instead of this basic step, you want to employ
some additional logic in the handling of the application. You can perform the following sequence of steps to try to determine
whether you can grant the loan without going to the financial institution (the loan approver) for a full review; if the requested
amount is high, it is always sent to the financial institution for review. If the amount is low, you invoke a new Web service,
called the loan assessor, to determine the risk. If the assessor determines there's low risk giving the applicant the loan, then it
can be approved. Otherwise, send it to the financial institution for a full review.

Setting up the process

In BPEL, this process is modeled by using a <flow> activity. Remember that a <flow> activity allows you to define links
joining the activities contained within it, so that is where you will put the logic to do the above processing. Keep the
<receive> and <reply> exactly as before, and add two <invoke>s -- one for the assessor and one for the approver. You
also add an <assign> activity to put your message in the reply. Next, join the <receive> with links to the two invokes.
These links are guarded by two conditions: if the amount is less than 10,000, then you want to invoke the assessor; if the
amount is greater than or equal to 10,000, you want to invoke the approver. Then, link the assessor's invoke to the approver's
with the condition that the risk is high, and to the <assign> with the condition that the risk is low. Finally, link the approver's
invoke and the assign to the <reply> without specifying any condition (default). Keep in mind that for this process the flow
of control follows the links, as governed by the value of the condition guarding each link. These concepts will be explained in
greater detail below. The resulting structure is illustrated in Figure 1.

Figure 1. Internal view of loan approval process

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

1 of 7 19.12.2008 10:10

Service descriptions

The WSDL description of the loan assessor is shown in Listing 1. The assessor service can perform one operation, check, that
returns the level of risk associated with giving the customer a loan.

Listing 1. Loan assessor's WSDL snippet (loanassessor.wsdl)

<definitions
 targetNamespace="http://tempuri.org/services/loanassessor"
 xmlns:tns="http://tempuri.org/services/loanassessor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:loandef="http://tempuri.org/services/loandefinitions"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
<import namespace="http://tempuri.org/services/loandefinitions"
 location=
"http://localhost:8080/bpws4j-samples/loanapproval/loandefinitions.wsdl"/>
<message name="riskAssessmentMessage">
 <part name="risk" type="xsd:string"/>
 </message>
 <portType name="riskAssessmentPT">
 <operation name="check">
 <input message=
 "loandef:creditInformationMessage"/>
 <output message="tns:riskAssessmentMessage"/>
 <fault name="loanProcessFault" message=
 "loandef:loanRequestErrorMessage"/>
 </operation>
 </portType>
 <binding ...> ... </binding>
 <service name="LoanAssessor">....</service>
</definitions>

Add one more serviceLinkType to the process's definition to model its interaction with the new assessor partner (Listing
2). The added service link type states that if someone wants to be an assessor, he or she must have the risk assessment port
type defined earlier.

Listing 2. Addition to loan approval WSDL

<slnk:serviceLinkType name="riskAssessmentLinkType">
 <slnk:role name="assessor">
 <portType name="asns:riskAssessmentPT"/>
 </slnk:role>
</slnk:serviceLinkType>

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

2 of 7 19.12.2008 10:10

Creating the process

The next step is to define the process. Starting with the one created last time, remove the <sequence> and the <invoke>.
Then, in order to incorporate the loan assessor into the process, add it as a partner with the assessor role in the
serviceLinkType just defined, and add a container to receive its output message. To the list of partners, add the
following:

<partner name="assessor"
serviceLinkType="lns:riskAssessmentLinkType"
partnerRole="assessor"/>

To the list of containers add the following:

<container
name="riskAssessment"
messageType="asns:riskAssessmentMessage"/>

Flows and links

The presence of links necessitates the use of a <flow> activity, whose definition is started below in Listing 3. The links to be
used are defined on the <flow> activity itself by assigning them names.

After defining the links, they are used to link the <receive> activity to the two <invoke>s. (Note: Since two activities are
linked together in BPEL using the name of the link, they both need to be contained in the <flow> in which the link was
defined.) The definition of the activity that is the source of the link, in this case the <receive>, will have a <source
linkName="[link_name] "> element for each outgoing link, and the definition of the activity that is the target of a link,
in this case each of the <invoke>s, will have a <target linkName="[link_name]"> for each incoming link. Each
link may have only one source and one target.

A link is in a default state before and during the time that its source activity is running. Once the activity completes, each link
is activated with a boolean value that is the result of evaluating a transition condition. Transition conditions are defined in the
<source> element referring to the link in order to explicitly evaluate a link's boolean value. For the <receive> activity,
they evaluate whether or not the amount requested is less than 10,000. If no transition condition is defined, the default value
used is true.

Define the links on the flow and specify the ones starting from the <receive> activity, along with their conditions. You also
define the assessor's <invoke>, which is the target of the link receive-to-assess, and the source of two of its own links.

Listing 3. Definition of <flow> activity

<flow>
 <links>
 <link name="receive-to-assess"/>
 <link name="receive-to-approval"/>
 <link name="approval-to-reply"/>
 <link name="assess-to-setMessage"/>
 <link name="setMessage-to-reply"/>
 <link name="assess-to-approval"/>
 </links>
 <receive name="receive1" partner="customer"
 portType="apns:loanApprovalPT"
 operation="approve" container="request"
 createInstance="yes">
 <source linkName="receive-to-assess"
 transitionCondition=
 "bpws:getContainerData('request', 'amount')<10000"/>
 <source linkName="receive-to-approval"
 transitionCondition=
 "bpws:getContainerData('request', 'amount')>=10000"/>
 </receive>
 <invoke name="invokeAssessor" partner="assessor"
 portType="asns:riskAssessmentPT"
 operation="check" inputContainer="request"

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

3 of 7 19.12.2008 10:10

 outputContainer="riskAssessment">
 <target linkName="receive-to-assess"/>
 <source linkName="assess-to-setMessage"
 transitionCondition=
 "bpws:getContainerData('riskAssessment', 'risk')='low'"/>
 <source linkName="assess-to-approval"
 transitionCondition=
 "bpws:getContainerData('riskAssessment', 'risk')!='low'"/>
 </invoke>

Conditions and data assignment

Referring to Figure 1, consider the link that goes from the <receive> activity to the assessor's <invoke>. In the flow
definition above, this is the receive-to-assess link, and it is guarded by the transition condition
bpws:getContainerData('request', 'amount')<10000. As with all types of conditions, transition conditions
must be XPath expressions and must be boolean-valued. This particular XPath expression uses one of the XPath extension
functions introduced by BPEL4WS: bpws:getContainerData(...). The bpws:getContainerData(...)
function can be employed by any expression wishing to retrieve data from a container within the process, and its signature is as
follows: bpws:getContainerData("containerName", "partName", "locationPath"?) where
containerName is the name of a container, partName is the name of a part within that container, and locationPath is
an optional absolute location path within the specified part.

Refer back to the earlier example to see where the bpws:getContainerData('request', 'amount') function gets
its data from. It first looks for the request container, which is defined in the loanapproval.bpel file. You can see from the
definition of the request container that it holds a message of type loandef:CreditInformationMessage. By looking
in the loandefinitions.wsdl file, you see that the message type loandef:CreditInformationMessage contains a part
named amount, of type xsd:integer. You now know that invoking the bpws:getContainerData('request',
'amount') function will return an integer, and evaluating the XPath expression
bpws:getContainerData('request', 'amount')<10000 will return true if that integer is less than 10000, and
false otherwise. As a result, the receive-to-assess link will be activated with the boolean value.

Take a look also at the assess-to-setMessage link to determine how its transition condition,
bpws:getContainerData('riskAssessment', 'risk')='low', is evaluated. You see from the process defined
above that the container riskAssessment holds a message of type asns:riskAssessmentMessage, and you see from the
loanassessor.wsdl file that the message type asns:riskAssessmentMessage contains one part: a part named "risk", of
type xsd:string. So, invoking the bpws:getContainerData('riskAssessment', 'risk') function returns a
string, which is then compared to the string 'low'. If they match, the entire XPath expression evaluates to true. Keep in mind that
since the condition can contain basically any boolean-valued XPath expression, there are many different ways to achieve this
same result. For example, instead of bpws:getContainerData('riskAssessment', 'risk')='low' you could
write contains(bpws:getContainerData('riskAssessment', 'risk'),'low') or starts-
with(bpws:getContainerData('riskAssessment', 'risk'), 'lo').

At this point, there are two containers, and neither contains information that can be sent directly back to the customer; one
contains the customer's original request information, and the other contains the string low. What needs to be sent back to the
customer is the string yes, so you define an <assign> activity to accomplish this, as shown in Listing 4.

Listing 4. <assign> activity

<assign name="assign">
 <target linkName="assess-to-setMessage"/>
 <source linkName="setMessage-to-reply"/>
 <copy>
 <from expression="'yes'"/>
 <to container="approvalInfo" part="accept"/>
 </copy>
</assign>

As you can see above, the <assign> activity is the target of the assess-to-setMessage link, and the source of the
setMessage-to-reply link. This assign contains one copy element, and it employs the general expression form of the <from>
element. When using the general expression form of the <from> element, the expression can be anything XPath will allow,

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

4 of 7 19.12.2008 10:10

provided it returns an XPath value type (string, number or boolean). In this case, the expression simply specifies the string yes,
which is then copied into the accept part of the approvalInfo container. You see from looking at the earlier example that the
accept part of the message contained in the approvalInfo container is of type xsd:string.

Finally, there are the approver's <invoke> and the <reply> (see Listing 5), which are the same as they were earlier, only
they are connected to the rest of the activities with the links defined above. The reply sends the answer of whether or not the
loan was approved, which by now should be in the container approvalInfo. Remember that the container will now be populated
because either the <assign> put in a yes or the approver's <invoke> put its answer there. As described in the "Activities
and In-Memory Model" article (see Resources), an activity that is the target of some links waits until all of its links have
activated, and it has control from its enclosing activity. The default behavior of such an activity is that if at least one of its link
activation values is true, then it starts running; otherwise, it ends abnormally and sends its links out false. So the approver can't
run until it gets the values of both of its links, and only one of them has to be true.

Listing 5. Approver's <invoke> and the <reply>

 <invoke name="invokeapprover"
 partner="approver" portType="apns:loanApprovalPT"
 operation="approve"
 inputContainer="request"
 outputContainer="approvalInfo">
 <target linkName="receive-to-approval"/>
 <target linkName="assess-to-approval"/>
 <source linkName="approval-to-reply" />
 </invoke>
 <reply name="reply" partner="customer"
 portType="apns:loanApprovalPT"
 operation="approve" container="approvalInfo">
 <target linkName="setMessage-to-reply"/>
 <target linkName="approval-to-reply"/>
 </reply>
 </flow>
</process>

We briefly comment here on what happens when an activity's join condition is false. In the default case, that translates to what
happens if all the links coming into an activity are false. We said earlier that the activity disables and send out its links false;
this is only half the truth. What really happens is that this is considered a fault in BPEL, the activity throws a joinFailure
fault, and if it is not caught, the entire process is disabled. However, one way to stop this from happening is to set the global
suppressJoinFailure attribute on the <process> element. This will stop all joinExceptions from propagating.
As you can see from the full BPEL file, this attribute is set to true in this example. We will discuss exceptions in more detail
in a later article.

Putting it all together

In this section, we show you the possible paths of execution through the process. The possible paths the process would follow
are illustrated in Figure 2 below. (Note: To reduce clutter, only the essentials of the flow activity are shown.) Take a look at
the left-most scenario in detail. The process starts once a customer has sent a loan request, and the two links coming out of the
<receive> activate: one false, one true - depending on whether or not the amount requested exceeds 10,000. Assume for the
first case the amount was very low and the true link is the one going to the assessor's <invoke>, which is now ready to run.
The second link, the one going to the approver, goes false, but the approver <invoke> must wait for the value of its second
link to come in before it can react. The assessor <invoke> runs.

Assume that the assessor returns saying the risk is too high. The link assessor-to-approver goes true, and the approver also
runs since one of its links was true. It is worth noting that in BPEL, an activity with multiple incoming links can define its own
condition, known as the join condition, on the incoming links. This would be used if the activity required a more sophisticated
check than the default or on the incoming link values. The approver is invoked.

Once the approver's <invoke> completes, putting its answer in the approvalInfo container, the link leaving it goes true. At
this point you may wonder how the reply will run since it has to wait for the <assign> to send the value down the second

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

5 of 7 19.12.2008 10:10

link. It actually does get a value on that second link, and that value is false. Here's why: After the assessor's <invoke>
completed, the assessor-to-approver link went true, and the assessor-to-setMessage link went false. The <assign>, having
no other links, immediately disables and sends its link out false. The <reply> now has the value of both of its links and one
of them is true. It sends the message to the customer and the process ends.

Figure 2. The flows in all possible complete runs of the loan approval process

Note: Green links are activated with 'true' and red ones with 'false.'

Running the process in the BPWS4J engine

As with our earlier articles, if you want to run the process, you'll need to download and install the BPWS4J engine available
from alphaWorks (see Resources).

The process we have described here is the loan approval sample distributed with the BPWS4J release, with the fault handler
removed. Fault handlers will be discussed and illustrated in a future article in this series.

Follow the instructions for running the loan approval sample in the BPWS4J documentation.

Remember, if you would like to see more of what is happening behind the scenes, go to the log4j.properties file in the
webapps/bpws4j/WEB-INF/classes directory and uncomment line 24, which says:
log4j.logger.bpws.runtime.flow.base=DEBUG.

Next time

In the next article in this series, we will look at correlation and fault handling. This will be followed by another example BPEL
flow that illustrates a concrete process incorporating both of these features.

Resources
Participate in the discussion forum.

Please note that this articles refers to version 1.0 of the BPEL4WS specification. The latest version, BPEL4WS1.1, is
now available, and an article describing the key differences between the two specifications will be available shortly.

Download the Business Processes for Web Services Java Runtime from alphaWorks.

Read the Business Process Execution Language for Web services specification (developerWorks, July 2002).

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

6 of 7 19.12.2008 10:10

To learn more about activities, read the article "Activities and In-Memory Model" (developerWorks, October 2002).

Read these related articles: "Automating Business processes and transactions in Web services" and "Business
Processes in a Web services World" (developerWorks, August 2002).

Take a look at the last article in this series, "Learning BPEL4WS, Part 4: Creating processes with the BPWS4J editor,"
which describes design approaches to creating BPWS4J processes. (developerWorks, November 2002).

About the authors

Matthew J. Duftler is a Software Engineer in the Component Systems group at IBM T.J. Watson Research Center. He was one
of the original authors of Apache SOAP, is the co-lead of JSR110, Java APIs for WSDL, and is a co-author of the IBM
BPEL4WS engine, BPWS4J. You can contact Matthew at duftler@us.ibm.com.

Francisco Curbera is a Research Staff Member and the Manager of the Component Systems group at IBM T.J. Watson
Research Center. He is co-author of the BPEL4WS, WSDL and WSFL specifications, and co-developer of BPWS4J, Apache
SOAP and WSTK. He received a PhD in Applied Mathematics from Columbia University. You can contact Matthew at
curbera@us.ibm.com.

Rania Khalaf is a software engineer in the Component Systems group at the IBM T.J. Watson Research Center. She joined
IBM in 2001 after having completed her Bachelors and MEng degrees from MIT. Rania is a co-author of the IBM BPEL4WS
engine, BPWS4J, available from alphaWorks. You can contact Rania at rkhalaf@watson.ibm.com.

Share this....

Digg this story del.icio.us Slashdot it!

Business Process with BPEL4WS: Learning BPEL4WS, Part 5 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol5/...

7 of 7 19.12.2008 10:10

