Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

Business Process with BPEL4AWS: Learning
BPEL4WS, Part 3

Activities and the in-memory model

Level: Introductory

Matthew Duftler (duftler@us.ibm.com), Software Engineer, IBM
Rania Khalaf (rkhalaf@us.ibm.com), Software Engineer, IBM

01 Oct 2002

The recently released Business Process Execution Language for Web Services (BPEL4AWS) specification is
positioned to become the Web services standard for composition. This series of articles aims to give readers an
understanding of the different components of the language, and teach them how to create their own complete
processes. The previous parts of the series gave an overview of the language, and took readers through creating
their first simple process. This part will cover each of the activities in more detail. We will also cover how the
various BPEL4WS constructs may be represented and manipulated in memory.

Introduction

Now that we've gone over the language basics in Parts 1 and 2 of this column, and we have created a simple example (see
Resources), let's go over how to use each of the activities in more detail. In this article, we will provide detailed descriptions
of each of the BPELAWS activities. We will also describe the in-memory representation employed by BPWS4J (IBM's
implementation, available on alphaWorks) to represent BPELAWS processes, and give an example illustrating the model's use.

Basic activities

Basic activities are the simplest form of interaction with the outside world. They are non-sequenced and individual steps that
interact with a service, manipulate the passing data, or handle exceptions.

Web services interactions

There are three activities a process can use for interacting with the outside world: <invoke>, <reply>, and <receive>.
As we saw in the previous articles, the interactions occur with the partners of the process using these three activities. By
specifying a portType, operation, and partner, each of these activities identifies the Web services call it belongs to.

The <invoke> activity is used by a process to make invocations to Web services provided by partners. In addition to the
portType, partner, and operation, the invoke specifies input and output containers, for the input and output of the operation
being invoked. An invocation can be either synchronous (request/response) or asynchronous (one-way). In the latter case, only
an input container is required.

A business process provides services to its partners through a pair of <receive> and <reply> activities. The receive
represents the input of a WSDL operation provided by the process. If the process needs to send back a reply to the partner who
sent the message, then a reply activity is necessary. Multiple reply activities may be defined in the process to answer that
partner's call; however, only one matching <reply> may become active at any one time. The matching of the appropriate
reply activity is done at runtime, when the process looks for such an activity that is ready to run and has the same portType,
operation, and partner as the <receive>. For example, the process may place the received message in a certain container,
containerA, to be sent back if a certain condition is met, and the message from another container, containerB otherwise. In this
case, the receive will have two links with the condition on them; these links will go to two reply activities, only one of which
will activate and send the correct message back to the partner.

Process lifecycle
A business process instance may only be created if a message is sent to specially marked <receive> or <pick> activities.

10of6 19.12.2008 10:06

Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

The receive activities specify that they are able to create a process instance by setting the createlnstance attribute to true. The
<pick> activity will have an onMessage element with that same attribute set to true. <pick> is explained in more detail
later on in this article. The first receive activity thus marked that gets a message will create the instance, and the rest will then
just be treated as regular receive activities in that instance.

At this point you may wonder how you can create a second instance. Correlation is used to figure out which instance an
incoming message is meant for. All receives and onMessages that can start a process must have the same correlation set. So
when a message comes in, the process checks to see if it contains a correlation set that matches that of an existing instance. If
it does it sends it there. Otherwise, it will create a new instance based on the receive activity that matches the operation,
portType and partner information of the incoming message. Correlation in BPEL will be discussed in detail later in this series
of articles.

Manipulating data: the <assign> activity

The <assign> activity can be used to copy data from one container to another, as well as to construct and insert new data
using expressions. The use of expressions is primarily motivated by the need to perform simple computation (such as
incrementing sequence numbers) that is required for describing business protocol behavior. Expressions operate on message
selections, properties, and literal constants to produce a new value for a container property or selection.

Each <assign> activity contains one or more <copy> elements; each <copy> element contains exactly one <from>
element and exactly one <to> element. There are various forms of the <from> and <to> elements, and the most important
thing to remember is that the value to be copied from the source (the <from>) to the destination (the <to>) must be
type-compatible.

One of the simpler forms of <from> simply specifies a container by name. When using a source that specifies just a
container, an entire message will be copied; this means that the destination must also specify just a container.

A more complex form of <From> specifies a container and a part within that container. When using this form, the destination
must also specify both a container and a part.

A third form of <From> specifies a general expression to be evaluated using XPath. This expression can be anything XPath
will allow, provided it returns an XPath value type (string, number, or Boolean). When using this form, the destination must
specify a container and a part.

In short, messages can overwrite other messages, and message parts can overwrite other message parts. Since expressions do
not return entire messages, they can only be used to overwrite message parts.

Since it is necessary to enable XPath expressions to access information from the process, BPELAWS introduces several XPath
extension functions. The extension functions are defined in the standard BPEL4AWS namespace, http://schemas.xmlsoap.org
/ws/2002/07/business-process/, and the prefix bpws is associated with this namespace.

An example of one of these functions is shown below.

bpws:getContainerData(''containerName', "partName', "locationPath"?)

In this example, where containerName is the name of a container, partName is the name of a part within that container, and
locationPath is an optional absolute location path within the specified part.

The bpws :getContainerData() function can be used by any XPath expression wishing to retrieve data from a container
within the process, as if it were a built-in XPath function.

Note: In addition to copying messages, parts, and expressions, the <assign> activity can be used to copy service references
to and from partner links.

Other basic activities

Faults can be signaled in BPELAWS by a <throw> activity. In order for you to be able to use fault handlers to eventually
catch and handle that fault, the language requires that the fault have a globally uniqgue QName. An optional container may be
added to point to where data related to the fault may be found. For example, you may have a <throw> activity that signals a
certain kind of fault, and then a fault handler that has a <reply> that sends a partner information about a fault. That reply
would use the container specified in the fault activity.

2 of 6 19.12.2008 10:06

Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

The <terminate> activity can be used to immediately abandon all execution within the business process instance that
executes the terminate activity.

The <wailt> activity allows the process to wait for a specific time interval or until a certain deadline is reached.

The <empty> activity does nothing. It may be used if you need to catch and suppress a fault.

Structured activities

Structured activities prescribe the order in which a collection of activities take place. They describe how a business process is
created by composing the basic activities it performs into structures that express the control patterns, data flow, handling of
faults and external events, and coordination of message exchanges between process instances involved in a business protocol.

As described earlier in the article series, the <sequence> activity contains one or more activities that are executed
sequentially. The activities are executed in the order in which they appear within the <sequence> element. When the final
activity in the <sequence> has completed, the <sequence> activity itself is complete.

The <switch> activity functions much like the switch construct that occurs in many traditional programming languages.
There is an ordered list of one or more conditional branches, defined by <case> elements, followed by an optional
<otherwise> element. Each <case> branch specifies a Boolean XPath expression, and the expressions are evaluated in the
order in which they appear (the conditional expressions are evaluated using much the same logic described for general
expressions in the earlier section on <assign>). The first <case> element whose Boolean expression evaluates to true has
its child activity performed. If no <case> element's condition holds true, the child activity of the <otherwise> element is
performed. If no <otherwise> element is specified, there is an implied <otherwise> that contains an <empty> activity.
When the selected branch completes, the <switch> activity is complete.

The <whi le> activity repeatedly performs its child activity until the specified Boolean condition no longer evaluates to true.
The condition is evaluated as an XPath expression.

The <pick> activity contains a set of event handlers. Each handler contains one activity, which may run after the pick has
started and the event that the handler is waiting for occurs. The handlers include alarm handlers which specify a duration or
deadline, and message handlers (onMessage) which wait for messages from a particular partner, portType, and operation
triplet. The message handlers are able to create a process instance in the same way as a receive, as described in the section
about process lifecycle above (the createlnstance attribute is used). Only the first event handler to receive its event will run,
and the <pick> will complete once that handler's activity completes.

The <scope> activity provides fault and compensation handling capabilities to the activities nested within it. Scopes will be
covered in more detail in the upcoming article on fault-handling and compensation.

The <Flow> construct provides the ability to run activities in parallel, as well as to define guarded links. It may contain an
arbitrary number of activities. When a flow is started, all the activities in it are ready to run unless they have incoming links
that have not yet been evaluated. A flow defines a set of links whose source and target activities must be nested within it.

The links put their own constraints on how the activities of a process are set to run. Once an activity completes, it evaluates
any conditions on the links leaving it. If no condition is defined and the activity has completed normally, then the conditions all
evaluate to true. If the activity has faulted, or could not be run, then it sends all its links out false. On the other side, the
activity that has links coming into it has to wait until it knows the value coming down all of its links before it can run. It also
needs to have control from its enclosing activity. For example, if it is the second activity in a sequence and all of its links
come in, it may not run if the first activity in that sequence has not yet completed. Once it has this control, and it knows the
value of all its incoming links, it evaluates a condition known as the join condition. The join condition involves the state of the
incoming links and must evaluate to true if the activity is to run. If it evaluates to false, then the activity signals a join failure
and ends abnormally. The default join condition is true if the activity's implicit link (control from the parent) is true and any
one of its explicit links is true. All the link conditions are XPath expressions.

30f6 19.12.2008 10:06

Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

BPWS4J model

Now that we've covered the language in a bit more detail, let's take a look at a mechanism for creating and representing
in-memory representations of BPELAWS processes. We call this set of APIs the BPWS4J model. The "model” includes a
factory mechanism, and all the interfaces used to represent the BPELAWS constructs.

An application first obtains a BPWSFactory instance via the static newlInstance method of BPWSFactory. The newlnstance
method uses the following ordered lookup procedure to determine the BPWSFactory implementation class to load:

e Check the com.ibm.bpws.factory.BPWSFactory system property.
e Check the lib/bpws.properties file in the JRE directory. The key will have the same name as the above system property.
o Use the platform default value (will vary with implementations).

Note: There is also a static newlInstance method that takes the fully-qualified class name of a factory implementation as an
argument, in which case the above procedure is not employed.

Once a BPWSFactory instance is obtained, the method newBPWSProcess can be invoked to create a new BPWSProcess. Once
that process is obtained, it serves as a factory that can be used to create the rest of the items that will make up the full process.

Listing 1 is an example that programmatically constructs a process containing <receive>/<reply>a sequence:

Listing 1. Constructing a <receive>/<reply> sequence

BPWSFactory factory = BPWSFactory.newlnstance();
BPWSProcess process = factory.newBPWSProcess();
String tns = "urn:echo:echoService";

Containers containers = process.createContainers();
Container container = process.createContainer();
Partners partners = process.createPartners();
Partner partner = process.createPartner();
Sequence sequence = process.createSequence();
Receive receive = process.createReceive();

Reply reply = process.createReply();

process.setName(*'echoString');
process.setTargetNamespace(tns);

partner.setName(*'caller™);
partner.setServiceLinkType(new QName(tns, "echoSLT™));
partners.addPartner(partner);
process.setPartners(partners);

container.setName(‘'request');

container.setMessageType(new QName(tns, "StringMessageType'™));
containers.addContainer(container);
process.setContainers(containers);

receive.setName("’EchoReceive');
receive.setPartner(partner);
receive.setPortType(new QName(tns, "echoPT'));
receive.setOperation(‘'echo™);
receive.setContainer(container);
receive.setCreatelnstance(Boolean.TRUE);
sequence.addActivity(receive);

reply.setName("'"EchoReply');
reply.setPartner(partner);
reply.setPortType(new QName(tns, "echoPT'));
reply.setOperation(‘‘echo™);
reply.setContainer(container);
sequence.addActivity(reply);

sequence . setName(*'EchoSequence'™);
process.setActivity(sequence);

4 of 6 19.12.2008 10:06

Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

The in-memory representation created by the above sequence of steps should represent the process in Listing 2.

Listing 2. The in-memory model of the sequence steps

<process name="‘echoString"
targetNamespace=""urn:echo:echoService"
xmIns:tns="urn:echo:echoService"
xmlns=""http://schemas.xmlsoap.org/ws/2002/07/business-process/"">

<partners>
<partner name="caller"
servicelLinkType="tns:echoSLT"/>
</partners>

<containers>
<container name='‘request"
messageType=""tns:StringMessageType"/>
</containers>

<sequence name="EchoSequence'*>
<receive name="EchoReceive"
partner="caller" portType=""tns:echoPT"
operation="echo" container="request"
createlnstance="yes"/>
<reply name="EchoReply"
partner="caller" portType="tns:echoPT"
operation=""echo" container="request'/>
</sequence>

</process>

The pattern, just demonstrated, of using the process as a factory, and then adding the constructed item to the appropriate
parent, is employed throughout the in-memory model.

The BPWS4J model can be used by tools, or by users who wish to programmatically create their processes, rather than reading
or generating them.

Next time
In the next article in this series, we will explain how BPEL processes can be created visually using the BPWS4J visual editor.

This will be followed by an article that illustrates the use of links and data manipulation by building on the loan approval
sample we have already seen.

Resources

e Participate in the discussion forum.

Please note that this articles refers to version 1.0 of the BPELAWS specification. The latest version, BPELAWS1.1, is
now available, and an article describing the key differences between the two specifications will be available shortly.

Check out the previous columns in the Business Process with BPEL column series.

Read the full details of the Business Process Execution Language for Web Services, Version 1.0 specification.

Download the Business Processes for Web services Java runtime (BPWS4J) from alphaWorks.

50f6 19.12.2008 10:06

Business Process with BPEL4AWS: Learning BPEL4WS, Part 3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol3.h...

About the authors

Matthew J. Duftler is a software engineer in the Component Systems group at IBM T.J. Watson Research Center. He was one
of the original authors of Apache SOAP, is the co-lead of JSR110, Java APIs for WSDL, and is a co-author of the IBM
BPEL4AWS engine, BPWS4J. You can contact Matthew Duftler at duftler@us.ibm.com.

Rania Khalaf is a software engineer in the Component Systems group at the IBM TJ Watson Research Center. She joined IBM
in 2001 after having completed her Bachelors and MEng degrees from MIT. Rania is a co-author of the IBM BPELAWS
engine, BPWS4J available from alphaWorks. You can contact the author at rkhalaf@watson.ibm.com.

Share this....

= Digg this story a del.icio.us J+ Slashdot it!

6 of 6 19.12.2008 10:06

