Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

Business Process with BPEL4AWS: Learning
BPEL4WS, Part 2

Creating a simple process

Level: Introductory

Rania Khalaf (rkhalaf@watson.ibm.com), Software Engineer, IBM TJ Watson Research Center

01 Aug 2002

The recently released Business Process Execution Language for Web Services(BPEL4WS) specification is
positioned to become the Web services standard for composition. It allows you to create complex processes by
creating and wiring together different activities that can, for example, perform Web services invocations,
manipulate data, throw faults, or terminate a process. These activities may be nested within structured activities
that define how they may be run, such as in sequence, or in parallel, or depending on certain conditions. This
series of articles aims to give readers an understanding of the different components of the language, and teach
them how to create their own complete processes. The first part of the series will take readers through creating
their first simple process. Subsequent parts will extend the example in different ways to illustrate and explain the
key parts of the language, including data manipulation, correlation, fault handling, compensation, and the different
structured activities in BPEL4AWS.

In order to demonstrate how activities may be created and aggregated with BPELWS, | will describe a simple example that
processes loan requests. This article will illustrate the main aspects of a composition, as well as show how the WSDL
descriptions of services relate to and are used by the BPEL4WS process definition. A complete process is created while
explaining the use of partners for interaction, containers for holding messages, and the activities for interacting with the outside
world, namely <receive>, <reply>, and <invoke>. In addition to describing how the process will run, I also show how
to deploy and run it using the BPWS4J engine available on alphaWorks.

In this example (see Figure 1), a customer sends a request for a loan; the request gets processed, and the customer finds out
whether the loan was approved. Initially, the middle step will involve sending the application to a Web services enabled
financial institution and telling the customer what it decided. From the customer's point of view, the process will consume his
application and then send him an answer. The diagram below shows this external view of the loan request process using the
cloud diagram introduced in the BPELAWS overview article. As I continue through this series of tutorials, I will cover
additional aspects of the BPELAWS language by adding levels of complexity to the step that processes the request.

Figure 1. External View of Loan Approval Process

% “raceive

BPEL4WS
Loan
Approval
Process

loanApprovalPT

<reply=

Wieb service

Setting up the process:

The behavior above consists of getting a message, then invoking the financial institution's Web service, and finally replying to
the customer. These three actions are defined in BPEL using the <receive>, <invoke>, and <reply> activities.
However, the process needs to define the relation of such simple activities to each other in order to know how and when to run
them. Such relations are defined in BPEL by using structured activities that define restrictions on how to run the activities they
enclose. In this example, you want the three to occur one after the other. This ordering may be achieved in BPEL using a
<sequence> activity, that would contain first the <receive> to consume the message, followed by an <invoke> to talk to

1of7 19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

the financial institution, and ending with a <reply> to send the answer to the customer. Therefore, the cloud above will
contain a process that has a sequence of these three activities, and can invoke the financial institution as illustrated in Figure 2.

Figure 2. What's in the cloud? Internal view of the loan approval process.

<receive=

P o WS Financial

Loan Institution's

Apr aval Web service
B Provass (loan
appraver)

Before you can begin fleshing out the process, you need to provide formal descriptions of the parties that will be involved and
the messages that will be exchanged and manipulated.

Creating the service descriptions: Using WSDL

BPEL compositions rely heavily on WSDL descriptions of the involved services in order to refer to the messages being
exchanged, the operations being invoked, and the portTypes these operations belong to. In the example, you will need the
description of the financial institution and the process itself. Consider that the financial world uses a unified set of messages
for describing loan information, and has those defined in the loan definitions in Listing 1.

Listing 1: Loan Definitions WSDL (loandefinitions.wsdl)

<definitions targetNamespace="http://tempuri.org/services/loandefinitions"
xmIns:tns="http://tempuri.org/services/loandefinitions"
xmIns:xsd="http://ww.w3.0rg/2001/XMLSchema"*
xmIns="http://schemas.xmlsoap.org/wsdl/*">

<message name="‘creditlnformationMessage'>
<part name="firstName" type="'xsd:string'/>
<part name="name" type=''xsd:string'/>
<part name="amount" type="'xsd:integer'/>
</message>

<message name="'loanRequestErrorMessage''>
<part name="errorCode" type='"'xsd:integer'/>
</message>

</definitions>

Assume you know of a financial institution that provides a loan approval service and is described by Listing 2 below. It
contains one a single operation, "approve", which it uses to decide the status of a loan request. The operation takes information
about the customer as input, and outputs an approval message containing the answer. The definition for the input message is
defined in the loandefintions WSDL above.

Listing 2: Loan Approver WSDL (loanapprover.wsdl)

<definitions targetNamespace="http://tempuri.org/services/loanapprover"

2 of 7 19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

xmIns:tns="http://tempuri.org/services/loanapprover"’
xmIns:xsd="http://ww.w3.0rg/2001/XMLSchema""

xmIns: loandef="http://tempuri.org/services/loandefinitions"
xmIns="http://schemas.xmlsoap.org/wsdl/*>

<import namespace="http://tempuri.org/services/loandefinitions"
location="http://localhost:8080/bpws-samples/loanapproval/loandefinitions.wsdl"/>

<message name="‘approvalMessage''>
<part name="accept' type="'xsd:string'/>
</message>

<portType name=""loanApprovalPT">
<operation name="approve'>
<input message="loandef:creditinformationMessage"/>
<output message=""tns:approvalMessage'/>
<fault name="loanProcessFault"
message=""loandef: loanRequestErrorMessage' />
</operation>
</portType>

<binding ...> ... </binding>
<service name="LoanApprover''>...._</service>
</definitions>

The process itself simply forwards the input and output messages to and from this service. Therefore, it will present the same
description to the user by referencing the above portType. One more required thing is to define serviceLinkTypes for the
services used. The serviceLinkType defines up to two roles that refer to the portTypes that are provided and required by
any two services it links together. In the case of this example, this serviceLinkType will be used to link the customer to
the process, as well as the process to the loan approver. Only one role is required because both the process itself and the loan
approver service provide the "approver" portType, and neither of them requires the user to support another portType. You
create the code in Listing 3 below for the process:

Listing 3: Loan Approval WSDL (loan-approval.wsdl)

<definitions
targetNamespace=""http://loans.org/wsdl/loan-approval"’
xmlns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:sInk="http://schemas.xmlsoap.org/ws/2002/06/service-1ink/"
xmlns:xsd=""http://www._w3.0rg/2001/XMLSchema"
xmlns: Ins="http://loans.org/wsdl/loan-approval"’
xmIns:apns="http://tempuri.org/services/loanapprover">

<import namespace="http://tempuri.org/services/loanapprover"
location="http://localhost:8080/bpws-samples/loanapproval/loanapprover.wsdl'/>

<import namespace="http://tempuri.org/services/loandefinitions"
location="http://localhost:8080/bpws-samples/loanapproval/loandefinitions.wsdl"/>

<slnk:serviceLinkType name="loanApprovalLinkType'>
<slnk:role name="approver'>
<portType name="apns:loanApprovalPT"/>
</slnk:role>
</slnk:serviceLinkType>

<service name="loanapprovalServiceBP'/>
</definitions>

Creating the process

All the requirements are now available for creating the process. You begin the definition with the <process> element, and
include the namespaces that will allow it to refer to the required WSDL information, where the message definitions are defined
(http://....Nloandefinitions), the target namespace of the loan approver (http://.../loanapprover), and the target namespace of the

30f7 19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

process's own WSDL (http://.../loan-approval). The process is now able to use the loan approver service as a component.

<process name=""loanApprovalProcess"
targetNamespace="http://acme.com/simpleloanprocessing"
xmIns="http://schemas.xmlsoap.org/ws/2002/07/business-process/""
xmIns: Ins="http://loans.org/wsdl/loan-approval™
xmIns: loandef=""http://tempuri.org/services/loandefinitions"
xmIns:apns="http://tempuri.org/services/loanapprover'>

The next step is to declare the parties involved. Named partners are defined, each characterized by a WSDL
servicelLinkType. For this example, the partners are the customer and the financial institution. The
myRole/partnerRole attribute on a partner specifies how the partner and the process will interact given the
servicelLinkType. The myRole attribute refers to the role in the serviceLinkType that the process will play,
whereas the partnerRole specifies the role that the partner will play. This is illustrated in the partner definitions below.
The loan approval process offers the functionality of the loanApprovalPT to the customer, and the financial institution in
turn offers that functionality to the process. This relationship can be seen in Figures 1 and 2 above.

<partners>
<partner name='‘customer"
serviceLinkType="Ins: loanApprovelL inkType"
myRole=""approver'/>
<partner name="‘approver"
serviceLinkType="Ins: loanApprovalLinkType"
partnerRole="approver"/>
</partners>

After defining the partners, you are nearly ready to start adding the activities that form the composition. Let's review what you
want the process to do. In order to ask for a loan, the customer sends the process a message, the process asks the financial
institution whether it will accept the loan application, and replies to the customer with another message either accepting or
refusing the application. How do you do this in BPEL? First of all, you need to put the incoming message where a BPEL
activity can access it. In BPEL, data is written to and accessed from data containers which can hold instances of specific
WSDL message types.

From the definition of the customer partner and the loanApprovalPT, it is clear that the customer will send a message of type
creditinformationMessage and get a reply of type approvalMessage. Therefore, the following list of containers is
added and are illustrated in Figure 2 as blue cylinders:

<containers>
<container name="'request' messageType=""loandef:CreditinformationMessage'/>
<container name="approvallnfo" messageType=""apns:approvalMessage'/>
</containers>

Interacting with the process: Receive, invoke, reply

A process may contain only one activity, which in this case will be the <sequence>. Now you can add to the sequence a
receive activity that can take the customer's message and put it in the appropriate container. The definition of a receive activity
must include the partner that will send it its message, and the port type and operation of the process that the partner is targeting
this message to. Based on this information, once the process gets a message, it searches for an active receive activity that has a
matching partner-portType-operation triplet and hands it the message. In order to avoid confusion, the specification states that
there may not be multiple receive activities with the same partner-portType-operation triplet that are active at the same time.
The activity will then place the message in the specified container and end. You start the sequence activity, and add the
receive to it:

<seguence>
<receive name="receivel" partner="customer"
portType="apns: loanApproval PT"
operation="approve' container="request"
createlnstance="yes'">

4 of 7 19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

50f7

</receive>

The next step is to ask the Web services-enabled financial institution whether or not it will accept the loan. This is done with a
regular Web services invocation, defined in the process by an Invoke activity. When this activity runs it will make the
specified invocation to the Web service using the message in its input container, put the answer it gets into its output container,
and end. Note that the call will be made on the "approver" partner to perform the approve operation.

<invoke name="'invokeapprover"
partner="approver"*
portType="apns: loanApproval PT"
operation="approve"
inputContainer="request"
outputContainer="approval Info'>
</invoke>

In order for the process to respond to the customer's request, it uses a Reply activity. Once a reply activity is reached, the
partner-portType-operation triplet it has is used to figure out whom to send the reply to. Therefore, in order to reply to the
message that arrived through the Receive activity, you would need a Reply activity with the same triplet. In this case, you want
to tell the customer what the financial institution decided, so the message to be sent will be found in the output container of the
invoke: approval Info. After the reply, the process ends. You close the sequence and process tags.

<reply name="reply" partner="customer' portType="apns:loanApprovalPT"
operation="approve'" container="approval Info'>
</reply>
</sequence>
</process>

Putting it all together

Once a process is deployed, it waits until somebody starts it. If you noticed, the receive contains an attribute called
"createlnstance™ which is set to true. That shows us an entry point into the process. Figure 3 illustrates how the loan approval

process will run.

Figure 3. Running the loan approval process.

Financial
Institution's
Web service

Figure Note: The numbers on the arrows indicate the order in which the steps occur. The black envelope is the message
containing the loan request. The red envelope is the message containing the answer to that request.

Once a client sends a message to a process manager with the appropriate triplet, a process instance is created and starts
running. In the given example, the process would start up the sequence, which would in turn start the receive. The message has
arrived so it will be put into the "request” container. The invoke will then occur. After the message that resulted from the
invocation is placed in the "approvallnfo™ container, the reply will take it and send it to the customer at which point that

19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

instance of the process ends. Multiple instances of the same process may be running simultaneously. When | explain more
complex processes, you will see how correlation is used to route messages to and from the correct instance of the same
process.

Running the process in BPWS4J

If you would like to run the process you have just created, you will need to get the BPWS4J engine available from
alphaWorks. (See Resources.) Follow the installation instructions provided, and don't forget to put the bpws4j-samples.war file
in the appropriate directory for your application server to find it.

The process you have here is a simplified version of the loan approval sample available with the BPWS4J release (which is
also the one in the specification). You will use the loan approver service provided in that sample, as well as the WSDLs of
both the loan approver and the process itself (loanapproval.wsdl). Those files are identical to ours, except that the process's
WSDL contains an extra serviceL inkType for an additional partner that their process uses.

Look up the information for running the BPWS4J samples, which is in the documentation of the engine. You will follow the
first three steps of the instructions exactly for running the loan approval sample. These changes are specifically in steps four
and five of how to use the Loan Approval sample. Instead of giving it the loan-approval.bpel file provided with the release,
you want to give it the one you have just created.

To create the BPEL file you will be using, cut and paste the process defined above (from the beginning to the end of the
<process> element) into a file also called loanapproval.bpel and save it to some other directory so as not to overwrite the
sample. Now, when you deploy the service as described in step 4, give it the WSDL file of the process as specified in
documentation, and the BPEL file you just created (see Resources for source code files).

The deployment Web page will then ask you for the WSDL file of the loan approver partner only. Give it the file as described
in the documentation. To know whether you have accidentally deployed the BPEL file that came with the engine instead, you
can check yourself by seeing whether it asks you for another partner's WSDL called the loan assessor. If it does that then you
gave it the BPEL file in the samples instead of ours and you need to start over. So for step 5, you will do exactly what the
documentation says except for the last sentence about deploying an "assessor" partner. You are now ready to run the process.
Follow the steps for executing the BPWS4J loan approval sample. You should get a yes or no when you ask for a loan. The
reason the client works with your BPEL file is that the entry points to both processes are the same, and the names are the same.

If you would like to see more of what is happening behind the scenes, go to the log4j.properties file in the webapps/bpws4j
/WEB-INF/classes directory and uncomment line 24, that says:

log4j . logger .bpws. runtime.flow.base=DEBUG

This will show you when each of the activities you created started running.

DEBUG [base] Scope loanApprovalProcess is running
DEBUG [base] Sequence null is running

DEBUG [base] Receive receivel is running

DEBUG [base] Invoke invokeapprover is running
DEBUG [base] Reply reply is running

Next time

In the next part of this article, I will go through some more parts of the BPEL4J language and illustrate their usage by adding
more activities to the loan approval example. In order not to be confusing, the additions will keep bringing the sample closer to
the one in the specification and BPWS4J release. In the meantime, you may want to read the other articles available about the
language and the runtime.

6 of 7 19.12.2008 10:05

Business Process with BPEL4WS: Learning BPEL4WS, Part 2 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol2/...

Resources

e Participate in the discussion forum.

e Please note that this articles refers to version 1.0 of the BPELAWS specification. The latest version, BPELAWS1.1, is
now available, and an article describing the key differences between the two specifications will be available shortly.

e Check out the first installment of this column, Business processes, Part 1.

e Download the Business Processes for Web Services Java Runtime from alphaWorks.

¢ Read the Business Process Execution Language for Web services specification.

e Read these related articles: Automating Business processes and transactions in Web services and Business Processes in
a Web services World.

About the author

Rania Khalaf is a Software Engineer in the Component Systems group at the IBM TJ Watson Research Center. She joined
IBM in 2001 after having completed her Bachelors and MEng degrees from MIT. Rania is a co-author of the IBM BPEL4WS
engine, BPWS4J available from alphaWorks. You can contact the author at rkhalaf@watson.ibm.com.

Share this....

5 Digg this story a del.icio.us J+ Slashdot it!

7 of 7 19.12.2008 10:05

