Bruce Silver Associates
Independent Expertise in BPM

BPMN and the Business Process Expert, Part 5:
Handling Errors and Business Exceptions

Summary: If 80% of the cost and problems with business processes comes from
20% of the instances — the exceptions — shouldn’t business have a role in
specifying exception handling? BPMN supports that view. Here we’ll learn the
diagram patterns to use in the most common exception-handling scenarios. Fifth
of six parts.

Author: Bruce Silver

Company: Bruce Silver Associates
Created on: 17 December 2007
Author Bio

Dr Bruce Silver is an independent industry analyst and consultant
focused on business process management software. He provides
training on process modeling with BPMN through
BPMessentials.com, the BPM Institute, and Gartner conferences,
and is the author of The BPMS Report series of product
evaluations available from the BPM Institute.

When you begin modeling your process, it is customary to begin with the “happy path,” the
activity flows appropriate when nothing goes wrong. But things often do go wrong, in a
wide variety of ways. Some problems are technical — a step returns an error code rather than
a business result. Others reflect business exceptions, such as the inability to complete the
process without additional information. BPMN stands out from traditional modeling
notations in its explicit support for exception handling in the diagram. As always, the key to
effective modeling is making the diagram as clear and expressive as possible. In this part,
we’ll focus on specific diagram patterns to use for modeling the most common types of
exceptions.

One way to categorize exceptions is by their source. Is the exception detected internally by
process logic, or is it a signal received from outside the process? Another way is to
distinguish business exceptions from system faults. A system fault means that a model
activity cannot provide a business result because of some technical problem — an error code
is returned by the implementation, or a communications link is down. A business exception
means that the model activity can complete successfully but returns a bad business result —
an item is out of stock, or requested information does not arrive in time, or the customer
cancels the order. These categories — business exception or system fault, internally detected
or externally signaled — provide a useful framework for selecting diagram patterns and
building a base of common understanding shared by all in your organization. These patterns
are not mandated by the BPMN spec, but should be considered best practice usage of the
notation.

Bruce Silver Associates BPMS Watch www.brsilver.com/wordpress
BPMN Training www.bpmessentials.com/

500 Bear Valley Road, Aptos CA 95003
Tel: 831.685.8803 Fax: 831.603.3424 E-mail: bruce@brsilver.com

BPMN — Handling Errors and Business Exceptions

Other important considerations in modeling exception handling are when the exception can
be detected, and what should happen when it is. For exceptions detected internally to the
process, the “when” is usually understood to be an end state of a particular activity.
However, exceptions signaled from outside could occur when the process is in any number
of states, so it is important to think about what the proper response to that signal should be
whenever it could occur.

Internal Business Exception Pattern

Many BPMN beginners instinctively associate exception handling with events. But by far
the most common exception-handling pattern doesn’t use events at all, just a basic gateway.
That is the internal business exception pattern, meaning the exception is detected internally
by logic in a process activity that completes normally but with a bad business result. In that
case, simply follow that activity with a gateway that tests the business result. One branch
out of the gateway leads to the happy path, and the other branch leads to the exception path.

m)
it (8
Do Something yes—p= Normal path
OoK?
A
St
no p Exception path

BPMN places almost no restrictions on where the exception path can go. It can lead directly
to an end event, or loop back to the activity preceding the gateway, or somewhere else. One
significant restriction is if the exception is enclosed in a subprocess, the exception path
cannot cross the subprocess boundary. For example, the following diagram, intended to
terminate the top-level process based on a business exception in a subprocess, is illegal in

BPMN:

~
‘)
Handle exception ()

Instead you need to end the exception path inside the subprocess, and if necessary insert
another gateway after the subprocess to end the parent process. While the second gateway
may seem redundant, it allows the diagram to remain valid whether the subprocess is
collapsed or expanded.

\

ubprocess

Next subprocess

© Bruce Silver Associates 2007 2

BPMN — Handling Errors and Business Exceptions

First subprocess

ﬂ\'\
4
Do Something

Next subprocess

yes

;.

Timeout Exception Pattern

A second common exception is when a process activity is not completed by a particular date
and time or by some specified duration after it starts. For that, use the timeout exception
pattern based on an attached timer event. In an attached timer event, the clock starts when
the activity it is attached to is first enabled. If the activity completes before that duration
expires, the normal flow out of the activity is enabled. If not, the activity is aborted and the
exception flow out of the timer event is enabled.

You can use subprocesses to specify when the timer starts and stops. For example, the
diagram above says that if activity C is not completed within 30 minutes of the start of
activity B, the exception flow is triggered.

System Fault Pattern

A system fault means the process activity cannot complete successfully because of a
technical problem. It is not the same as completing with a bad business result. For example,
a database query that returns no matching records is a business exception. A database query
that cannot be executed because of bad SQL syntax or because the server is down would be
a system fault. Typically system faults are exceptions on automated activities, or in BPMN
parlance, service tasks.

An error intermediate event attached to a service task indicates the system fault pattern. It
signifies that the task could not complete successfully. If the task completed successfully
but returned a bad business result, best practice would be to call that a business exception,
but many modelers would use an attached error event for that as well.

£

Request a service

~ Next step

403)
“Handle service
fault

503 .
“Handle service
unavailable

© Bruce Silver Associates 2007 3

BPMN — Handling Errors and Business Exceptions

In BPMN each fault is specified by an ErrorCode attribute, so there may be more than one,
each with its own exception flow.

Business Exception Throw-Catch Pattern

An error event can also be used to handle business exceptions when the simple internal
business exception pattern described earlier is insufficient. Typically that occurs when the
detected business exception in a subprocess needs to end a parallel thread of the subprocess
before beginning the exception flow. In that case, an error end event in the subprocess can
“throw” the error result signal that is “caught” by an error intermediate event attached to the
subprocess boundary. In this business exception throw-catch pattern, paired events are
linked by a common ErrorCode attribute.

~
e "Normal path
y .

1]
*~ Some error

handling
N
Catcb:[error ko3

* More error
handling

Subprocess

Something else in
parallel

Throw error

For example, here an internal business exception in the task Do Something is handled with
the simple internal business exception pattern described earlier. Following the gateway there
is some error handling and that path ends. The exception path out of the gateway doesn’t
end in a None end event but in an error end event. That is because there is a concurrent path
as well, here labeled Something Else in Parallel. For this error, we want to abort that
activity and then do more error handling. The thrown error signal is caught by the event
labeled Catch Error on the subprocess boundary. Like all attached events, it aborts the
activity — the entire subprocess — and then triggers the exception flow.

Thus an error event attached to a subprocess may have one or more error end events in the
expanded view of the subprocess that specify where the error signal is thrown.

Unsolicited External Business Exception Pattern

So far all the exceptions have been internal to the process. What about external business
exceptions, such as an order change or cancellation? The unsolicited external business
exception pattern uses an attached message event, which catches the signal from the external
entity. If the exception signal occurs while the activity it is attached to is running, the
activity is aborted and processing continues on the exception flow.

As with timeouts, subprocesses are essential for scoping these events. Think about the
earliest point in the process, and also the latest, where the external exception is handled in a
particular way. Now you can enclose that fragment in a subprocess, attach the message
event to it, and use the exception flow to lead to that handler. For example, in the diagram
below a customer can cancel the order after B has started but before C has ended.

© Bruce Silver Associates 2007 4

BPMN — Handling Errors and Business Exceptions

Solicited Response Exception Pattern

The preceding pattern is used to respond to unsolicited external events. But what about
exception responses solicited from external entities? Typically for these you would use an
event gateway, since you are waiting for the event, not aborting on the event. A common
scenario is a request for additional information, or perhaps a service request. An event
gateway pauses the process to wait for a response. The normal response on one gate
represents the happy path. An exception response, such as item out of stock, could be placed
on another gate to define the exception path. No response at all within a specified timeout
interval would be modeled as a timer event on a third gate. It could lead to a separate
exception path or one shared with the exception response, as shown below.

©

Transaction Compensation

BPMN goes beyond these basic exception handling patterns to model business transaction
recovery through compensation. A business transaction is a set of activities that must
complete atomically, meaning either all activities in the set are performed successfully or the
state of the system must be restored as if none of them were. Unlike classic ACID
transaction protocols like two-phase commit, business transactions are inherently long
running, so their resources cannot be locked for the duration of the transaction. Instead,

each activity in the business transaction is executed normally, but if any part of the
transaction fails to complete, those activities already completed are undone by executing a
compensating activity. For example, the compensating activity for a debit charge would be a
credit for the same amount.

" Normal path

'.:Exception path

No response

BPMN provides a way to specify all of this in the diagram. Actually, it specifies two
alternative ways. We’ll talk about one of them.

A subprocess in BPMN can be specified as transactional, in which case the rounded
rectangle is drawn with a double border. That signifies that if the entire subprocess does not
complete successfully, it must be compensated to restore a consistent state of all
participating resources. Any activity participating in the transaction that needs to be undone
if the transaction fails can be linked to its compensating activity via a compensation
intermediate event, drawn with a rewind icon inside.

© Bruce Silver Associates 2007 5

BPMN — Handling Errors and Business Exceptions

The compensation event is unlike all other attached events. For one thing, it has no
sequence flow out, but only an association to the compensating activity, also marked with a
rewind icon. For another, the event is only effective if the activity it is attached to has
already completed successfully. (Regular attached events are only effective if the activities
they are attached to are still running.) The sole purpose of the attached compensation event
is to link an activity with its compensating activity.

A cancel event, drawn with an X icon, attached to the border of a transactional subprocess, is
a special type of error event. Like a regular error event, it aborts the subprocess when
triggered, but before starting on the exception flow it implicitly commands compensation of
the transaction. That means that all activities in the transactional subprocess that have
completed and have defined compensating activities should execute those compensating
activities to restore a consistent state of all the resources. Once compensation is done, the
exception flow proceeds. As with the regular error event, throw of the cancel signal can
optionally be shown explicitly by a cancel end event inside the transactional subprocess.

J Transaction

Bookings

Book Flight
!
fL— » Cancel Flight
Iy

Successiul Chargs
Bookings Buyer

-
Send
\[/ Failed -

- Unavailability
Motice

Sockings

Exceptions | Handle through
(Hazards) ¥ customer Serice

In the above example from the BPMN spec, the transactional subprocess labeled Bookings
contains concurrent activities Book Flight and Book Hotel. If either one of them fails, the
error (here thrown implicitly as in our system fault pattern) is caught by the cancel event. If
Book Hotel fails after Book Flight has completed, invoking compensation executes Cancel
Flight to restore a consistent state. Any other event type attached to the subprocess, like the
regular error event here labeled Hazards, aborts the transaction without invoking
compensation.

© Bruce Silver Associates 2007 6

BPMN — Handling Errors and Business Exceptions

Transaction compensation is a neat solution to modeling transaction recovery explicitly in
the diagram. Unfortunately, few if any BPMN-based execution environments today provide
direct implementation.

Bruce Silver

© Bruce Silver Associates 2007 7

