Bruce Silver Associates
Independent Expertise in BPM

BPMN and the Business Process Expert, Part 6:
Choreography and Multi-Pool Processes

Summary: In addition to describing the internal process orchestration, or
control flow, BPMN can represent choreography, the message exchange between
processes. In the real world, an end-to-end business process may be composed of
multiple BPMN processes interacting through choreography. This discussion
sheds light on BPMN’s most subtle concepts: just what is a “process” in BPMN,
and what does a “pool” really represent? Last of six parts.

Author: Bruce Silver

Company: Bruce Silver Associates
Created on: 31 December 2007
Author Bio

Dr Bruce Silver is an independent industry analyst and consultant
focused on business process management software. He provides
training on process modeling with BPMN through
BPMessentials.com, the BPM Institute, and Gartner conferences,
and is the author of The BPMS Report series of product
evaluations available from the BPM Institute.

Now that we’ve explored the basics of BPMN, let’s return to the most basic concept of all:
What is a process? More specifically, what is a single BPMN process, as opposed to
multiple processes linked by message flow choreography in a single business process
diagram (BPD)? We know that a BPMN process is confined to a pool, and a BPD can
contain multiple pools, but what does a pool really signify?

The BPMN spec does not explain these things very well, and many BPMN tools that front-
end an execution runtime do not even support BPDs containing multiple pools. Moreover,
in those that do, most use those extra pools to represent only external entities that invoke
your process and receive responses from it, not other parts of your own internal business
process. Nevertheless, as you begin to apply BPMN to model real-world end-to-end
processes, you will find that sometimes you cannot confine them to a single pool. Thus to
be a true business process expert, you need a deeper understanding of processes and pools.

You frequently hear that a pool in a business process diagram represents an organization.
That is incorrect. A pool is simply a container for a BPMN process. If your BPD does not
have more than one pool, the pool containing your process might not even be drawn... but it
is always there. If your diagram shows choreography between your process and an external
process, a requesting client or invoked service provider, often the pool names may indicate
the organization behind each process, but the pool actually represents the process, not the
organization.

Bruce Silver Associates BPMS Watch www.brsilver.com/wordpress
BPMN Training www.bpmessentials.com/

500 Bear Valley Road, Aptos CA 95003
Tel: 831.685.8803 Fax: 831.603.3424 E-mail: bruce@brsilver.com



BPMN — Choreography and Multi-Pool Processes

A BPMN process, or pool, represents a domain of control. With that process or pool,
BPMN describes the orchestration, or flow of control, from one activity to the next. Ina
B2B process, if you are the seller, you do not control the buyer’s process, just your own. In
fact, you typically do not even know the precise orchestration of the buyer’s process. If you
want to show that pool in your diagram, you may declare it an abstract process or “black-
box” pool, empty inside, with choreography drawn to the pool boundary. Alternatively, you
may want to show activities representing specific touch points inside the buyer’s pool. In
that case you can declare it a collaboration process or “gray-box” pool, meaning those
activities do not represent the buyer’s detailed orchestration. Your own private process or
“white-box” pool is the one that actually models actual orchestration within a single domain
of control.

But sometimes your internal end-to-end process requires multiple private processes, all
within your control. So there is more to defining a BPMN process than domain of control.
To understand it, you need to think about the lifetime of a process instance, and what the
instance represents. When the process starts, an instance of it is created in an initial state,
and when the process completes, the instance is left in some final processed state. In
between, the state of the process instance depends on all the activities that have completed
up to that point.

It is helpful to think concretely about what the instance represents. For example, in an
order-to-cash process, the instance typically represents an order. When the process is
instantiated, the order state is simply received, and upon completion it could be fulfilled-and-
paid, or rejected, or possibly cancelled, or some other end state (Figure 1).

Canceled

Order-to-Cash

A\

! .
Order confirmation Cancellation Invoice
! 1

! Order rejection |

Payfnent

|
|
|
|
|
\

v

o DIV TE—

O_/
<=

Buyer

Figure 1. Simple order-to-cash process in one pool

Let’s say the order contains a list of items, and some of them are out of stock. The in-stock
items will be shipped and invoiced right away, but the others must be backordered and
invoiced separately. Figure 2 shows the backorder within the original BPMN process.
Figure 3 shows the backorder as a separate process invoked asynchronously (“fire-and-
forget”) from the original process. Let’s look at the difference.

There is no “correct” solution. In Figure 2, the order instance is not complete until all parts
of it, including the backordered items, have been fulfilled and paid. Who knows how long
that could take, but the entire order instance remains incomplete until the backorder is done.

© Bruce Silver Associates 2007 2



BPMN — Choreography and Multi-Pool Processes

= Check Credit Fulfill Order Invoice Order
0
©
Q ‘
o |
v | ‘ Customercancel . | = ;7 s
[¢] ! } 1
© i | i Canceled I
O ! | | ! Items backordered Backorder
Order ! | | I I
! irmati | nvoice
| Order cor‘mrmatlon : ! v‘ i : [
} ! Order rejection | ! ! o A
| | | Cancellation ! : A :
} } : : | : BO Invoice BO Payment
| | | ! } | ! i
AN I I S N I ! ¢
b 4 V4 v b
S
(]
)
-]
m

Figure 2. Handling backordered items within the order-to-cash pool

In Figure 3, the main process just handles normal order processing, while the exceptions —
the backorders — are instantiated in a separate process. A message event — a signal to
another pool — is thrown by an end event in the main process and caught by a start event in
the backorder pool. This allows more flexibility, since in principle a separate instance of the
backorder process could be created for each item not in stock, and each could proceed on its
own timeline without affecting the others.

.
(O]
-g Fulfill Backorder __|Invoice Backorder
i~ -
[}
a8
________ |
I
|
Q
Items backordered—>
G Check Credit Fulfill Order
©
(@]
é @ BOlnvoice ,
% | Bad credit—pm-(* Customer cancel @ I ' BOPayment
g | : Rejefcted | Canceled : I : I
Or!ier 1 I I
I Order confirmation I Invoice Payment I |
| Order rejection | | | |
| I | canceliation | I LI
I
v STt W S
) Y ! c )
~—
(0]
>
>
m

Figure 3. Handling backordered items in a separate pool

© Bruce Silver Associates 2007 3




BPMN — Choreography and Multi-Pool Processes

Notice another thing about both Figure 2 and Figure 3. Each payment message flow
corresponds to a specific invoice message flow. In some cases that may be how it works,
but instances of payments might not have a one-to-one correspondence to instances of

invoices...

and instances of invoices might not always correspond one-to-one with orders.

Remember in our order-to-cash process an instance always means an order, but some of its
activities, as they are actually performed, may deal with just part of an order or perhaps span
multiple orders. This mismatch of instances is another reason for using multi-pool

processes.

In the real world, an order handling process does not typically directly send invoices and
receive payments from customers. In some cases, customers are invoiced monthly and pay
monthly as well. For now, assume the invoice is sent directly from the order process but
payment processing is separate, linked to the end-to-end order-to-cash business process via

choreography. Let’s see how that works in BPMN.

1
BO Payment Notification

-0

@
-g @ Fulfill Backorder Invoice Backorder
X~
~N—_—_———_——_——— Backorder— =—— =— — — — — — — . | |
L e
Q
Items backordered—- l
I
< @ Fulfill Order
@
O
g , |
GL.) l Bad credif—pm-(* Customer cancel@ ‘ -_
_8 I : Rejqcted I Canceled I : :
I || I _
I I I I (—— _BOIrIvmce- J o
| | I | ~— —Payment Notification: == e o—
1 ' | 1 nvoice—}
Order | I | |
Order confirmation
: Order r:ejecnon | : I =
Cancellation o Notify order
I : I I | | % Apply to orders H proSt/:ess
1]
| | [ | | &
I I I L I I ﬂy rent
v B WAL
5]
E)
m

Figure 4. Payment processing as a separate pool

Figure 4 illustrates the most common reason for multi-pool processes: an instance of one
process does not have one-to-one correspondence with an instance of the other. Here each
payment from the buyer instantiates a payment process, which applies the payment against
outstanding invoices, corresponding to orders. When payment for a particular order is
complete, a notification is sent from the payment process to the corresponding order process.
Inside the Invoice Order subprocess of Order-to-Cash, for example, a message intermediate

event could wait for the payment notification message.

This is an example of a process modeling problem that frequently vexes students in my
BPMN training classes, what | call the 1:N problem. N instances of some process fragment

© Bruce Silver Associates 2007




BPMN — Choreography and Multi-Pool Processes

relate to 1 instance of the end-to-end process. Sometimes you can solve this problem with
multi-instance activities within a single pool, but multi-pool processes enable a better
solution.

Figure 5 is a student submission for an exercise intended to show an employee hiring
process. Can you see what’s wrong with it?

Ask HR to Post
Opening

Evaluate Resume Add

Requestor

Qualified

Notify Candidate
of Selection

Business Users

Post Opening

Internally Send Resume Selecl.tion Notiﬂcalinnl Respon
Notification |
| |
Resumea I |
Job Posting !
' | I |
l 1
Vi 4 Y )

Figure 5. Student example exhibiting the 1:N problem

After the job is posted, the process waits to receive resumes from applicants, and then
processes them. But as drawn, this model processes only one resume, the first one received.
The student intended that each resume message flow would be received by the message
event, but that’s not the way BPMN works. Once the instance has passed that event, it
cannot receive additional resumes. Here the overall process instance represents a job, but
for a portion of the process, this diagram represents a single candidate. This is the 1:N
problem.

ForEach Candidate C
"
Evaluate
Post Opening Collect Resumes . Candidate ‘ .
1l

Keep Looking? Make offer?

Figure 6. Solution to 1:N problem using multi-instance activities

Figure 6 illustrates a way to model this “legally” in a single pool using multi-instance
activities. After the opening is posted, an activity collects resumes for some time period.
After that no more resumes can be submitted. Then each candidate in the batch is processed
individually using an Ml activity. You don’t even have to complete the whole batch; if you

© Bruce Silver Associates 2007 5



BPMN — Choreography and Multi-Pool Processes

find the right candidate, you can cancel other instances of the Ml activity using the
Terminate end event.

This model, while easy for students to understand, has some drawbacks. For one thing, all
of the resumes must be collected in advance, and that activity must be complete before
evaluating any of the candidates can begin. With multi-instance activities, you need to have
all N instances available in advance. But in my experience, after you post the job, you want
to begin reviewing applications as they come in, so receiving and processing applicants are
actually concurrent activities. You can do this using multi-pool processes.

Candidates

Evaluate !
Candidate ‘ O
[+]

Posting Keep Looking?

Evaluate
Candidate

|
Candidate selected

I
Post Opening >é—>
Candidate selection

Make offer?

Hiring Process

Figure 7. Multi-pool processes provide a better way to handle the 1:N problem

In Figure 7, candidate resumes are not received by the Hiring Process pool, but by a separate
pool, Evaluate Candidate, in which an instance represents a single applicant. Each resume
submitted creates an instance of that pool, so you don’t need to know how many there are,
and the start and end times of each instance are independent both of the main process and of
each other, as well. The main Hiring Process pool is not directly evaluating candidates, but
simply waiting for notification that a candidate has been selected. In BPMN terms, it is
waiting for a message signal issued from Evaluate Candidate when that has occurred.

Note the Hiring Process and Evaluate Candidate pools both represent the same organization
— maybe even the same individual participants. They are simply distinct BPMN processes,
linked by choreography in a single business process.

These examples hopefully shed some light on the question, hard to answer directly, what is a
BPMN process? A BPMN process has an identifiable instance, a well-defined beginning
and end. However, that process may rely on activities in which the activity instance has no
definite one-to-one correspondence with the process instance, or no definite start or end time
relationship with the process. In such cases, those activities may be part of a separate
BPMN process, linked to it via message flow choreography.

Multiple internal, or private, processes can be linked this way to represent an end-to-end
business process. These processes may have independent start events and operate as peers in
the BPD, not strictly nested or chained together. Correlating appropriate instances of each

© Bruce Silver Associates 2007 6



BPMN — Choreography and Multi-Pool Processes

process — implementation detail not always visible in the BPMN diagram — is critical for
executing such a process.

In this series of articles, we’ve seen BPMN’s ability to represent end-to-end business
processes in diagrams that business people can understand, yet which retain remarkable
precision and expressive power. Unlike traditional process modeling notations, BPMN puts
events and exception handling right in the diagram itself, without requiring specification, or
even knowledge, of the technical implementation. The combination of this business-friendly
“abstract” representation with precise orchestration semantics lets BPMN process models
serve as the foundation of executable process implementations, with implementation
properties layered on top of the model. These implementation properties are added by IT,
often in direct collaboration with business, and leveraging a common underlying model.
This type of collaborative approach is essential if BPM is to realize its promise of improved
agility and responsiveness to changing business needs.

If BPMN is the “language” of this emerging collaboration, the Business Process Expert is
the agent of change. Knowing how to use BPMN to model processes correctly and
effectively has become the critical skill for all BPXs to master.

Bruce Silver

© Bruce Silver Associates 2007 7



