
User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter 4. Advanced BPEL
In the previous chapter, we covered the basics of BPEL and provided an introduction to the structure of business
processes. We are now familiar with defining business processes, invoking web service operations sequentially and in
parallel, defining partner links, defining variables, and assigning values. However, using BPEL for complex real-world
business processes requires additional functionality. Sometimes the activities of a business process need to be
performed in loops. Often activities might have links that would affect the execution order. This is usually the case
with concurrent flows. Sometimes we will have to wait either for a message event or an alarm event to occur.

One very important aspect of business process modeling is fault handling. Particularly in business processes that
span multiple enterprises and use web services over the Internet, we can assume that faults will occur quite often
due to various reasons, including broken connections, unreachable web services, unavailability of services, and so on.
If business processes do not finish successfully, we might need a way to undo the partial work. This is called
compensation and is one of the features of BPEL.

In this chapter, we will look at these and other advanced BPEL features including:

BPEL activities not covered in the previous chapter, such as loops, delays, and process termination

Fault handling

Scopes and serialization

Compensation

Events and event handlers

Concurrent activities and links

The business process lifecycle

Correlations and message properties

Dynamic partner links

Abstract business processes

A model-driven approach for generating BPEL processes from UML activity diagrams

Advanced Activities
In the previous chapter, we familiarized ourselves with important BPEL activities, including invoking web service
operations (<invoke>), receiving messages from partners (<receive>), returning results to process clients (<reply>),
declaring variables (<variable>), updating variable contents (<assign>), sequential and concurrent structured
activities (<sequence> and <flow>), and conditional behavior (<switch>).

However, these activities are not sufficient for complex real-world business processes. Therefore, in the first part of
this chapter we will become familiar with the other important activities offered by BPEL, particularly activity names,
loops, delays, empty activities, and process termination. We will not discuss concrete use cases where these
activities can be used, because they are well known to developers. We will, however, use these activities later in the
chapter, where we will present some examples. Let us first look at activity names.

Activity Names

For each BPEL activity, we can specify a name by using the name attribute. This attribute is optional and can be used
with all basic and structured activities. For instance, the Employee Travel Status web service invocation activity from
the example in Chapter 3 could be named EmployeeTravelStatusSyncInv; this is shown in the code excerpt below.
We will see that naming activities is useful on several occasions; for example, when invoking inline compensation
handlers or when synchronizing activities:

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/ch4

1 of 5 11.8.2009 10:47

...

<invoke name="EmployeeTravelStatusSyncInv"

partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" />

 ...

Activity names also improve the readability of BPEL processes.

Loops

When defining business processes we will sometimes want to perform a certain activity or a set of activities in a loop;
for example, perform a calculation or invoke a partner web service operation several times, and so on.

BPEL supports loops through the <while> activity. It repeats the enclosed activities until the Boolean condition no
longer holds true. The Boolean condition is expressed through the condition attribute, using the selected expression
language (the default is XPath 1.0). The syntax of the <while> activity is shown in the following code excerpt:

<while condition="boolean-expression" >

<!-- Perform an activity or a set of activities enclosed by <sequence>,

<flow>, or other structured activity -->

 </while>

Let us consider a scenario where we need to check flight availability for more than one person. Let us also assume
that we need to invoke a web service operation for each person, similar to the example in Chapter 3. In addition to
the variables already present in the example, we would need two more: NoOfPassengers to hold the number of
passengers, and Counter to use in the loop. The code excerpt with variable declarations is shown below:

<variables>

...

<variable name="NoOfPassengers"

type="xs:int"/>

<variable name="Counter"

type="xs:int"/>

...

 </variables>

We also need to assign values to the variables. The NoOfPassengers can be obtained from the Employee Travel web
service. In the following code, we initialize both variables with static values:

<assign>

<copy>

<from expression="number(5)"/>

<to variable="NoOfPassengers"/>

</copy>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/ch4

2 of 5 11.8.2009 10:47

<copy>

<from expression="number(0)"/>

<to variable="Counter"/>

</copy>

 </assign>

The loop to perform the web service invocation is shown in the code excerpt below. Please remember that this
excerpt is not complete:

<while condition=

"bpws:getVariableData('Counter') <

bpws:getVariableData('NoOfPassengers')">

<sequence>

<!-- Construct the FlightDetails variable with passenger data -->

...

<!-- Invoke the web service -->

<invoke partnerLink="AmericanAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<receive partnerLink="AmericanAirlines"

portType="trv:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseAA" />

...

<!-- Process the results ... -->

...

<!-- Increment the counter -->

<assign>

<copy>

<from expression="bpws:getVariableData('Counter') + 1"/>

<to variable="Counter"/>

</copy>

</assign>

</sequence>

 </while>

Loops are helpful when dealing with arrays. In BPEL, arrays can be simulated using XML complex types where one or
more elements can occur more than once (using the maxOccurs attribute in the XML Schema definition). To iterate
through multiple occurrences of the same element, we can use XPath expressions.

Delays

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/ch4

3 of 5 11.8.2009 10:47

Sometimes a business process may need to specify a certain delay. In BPEL, we can specify delays either for a
specified period of time or until a certain deadline is reached, by using the <wait> activity. Typically, we could
specify delays to invoke an operation at a specific time; or wait for some time and then invoke an operation; for
example, we could choose to wait before we pool the results of a previously initiated operation or wait between
iterations of a loop.

The <wait> activity supports two attributes:

for: We can specify duration using this attribute; we specify a period of time.

 <wait for="duration-expression"/>

until: We can use this attribute to specify a deadline; we specify a certain date and time.

 <wait until="deadline-expression"/>

Deadline and Duration Expressions

To specify deadline and duration expressions, BPEL uses lexical representations of corresponding XML Schema data
types. For deadlines, these data types are either dateTime or date. For duration, we use the duration data type. The
lexical representation of expressions should conform to the XPath 1.0 (or the selected query language) expressions.
The evaluation of such expressions should result in values that are of corresponding XML Schema types: dateTime
and date for deadline and duration for duration expressions.

All three data types use lexical representation inspired by the ISO 8601 standard, which can be obtained from the
ISO web page http://www.iso.ch. ISO 8601 lexical format uses characters within the date and time information.
Characters are appended to the numbers and have the following meaning:

C represents centuries

Y represents years

M represents months

D represents days

h represents hours

m represents minutes

s represents seconds. Seconds can be represented in the format ss.sss to increase precision.

Z is used to designate Coordinated Universal Time (UTC). It should immediately follow the time of day
element.

For the dateTime expressions there is another designator:

T is used as time designator to indicate the start of the representation of the time.

Examples of deadline expressions are shown in the code excerpts below:

<wait until="'2004-03-18T21:00:00+01:00'"/>
<wait until="'18:05:30Z'"/>

For duration expressions the following characters can also be used:

P is used as the time duration designator. Duration expressions always start with P.

Y follows the number of years.

M follows the number of months or minutes.

D follows the number of days.

H follows the number of hours.

S follows the number of seconds.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/ch4

4 of 5 11.8.2009 10:47

To specify a duration of 4 hours and 10 minutes, we use the following expression:

<wait for="'PT4H10M'"/>

To specify the duration of 1 month, 3 days, 4 hours, and 10 minutes, we need to use the following expression:

<wait for="'P1M3DT4H10M'"/>

The following expression specifies the duration of 1 year, 11 months, 14 days, 4 hours, 10 minutes, and 30 seconds:

<wait for="'P1Y11M14DT4H10M30S'"/>

Empty Activities

When developing BPEL processes, you may come across instances where you need to specify an activity as per rules,
but you do not really want to perform the activity. For example, in <switch> activities, we need to specify an activity
for each case. However, if we do not want to perform any activity for a particular case, we can specify an <empty>
activity. Not specifying any activity in this case would result in an error, because the BPEL process would not
correspond to the BPEL schema. Empty activities are also useful in fault handling, when we need to suppress a fault.

The syntax for the <empty> element is rather straightforward:

<empty/>

Process Termination

BPEL provides the <terminate> activity to terminate a business process before it has finished. We can use it to
immediately terminate processes that are in execution. Often we use <terminate> in switches, where we need to
terminate a process when certain conditions are not met.

The <terminate> activity terminates the current business process instance and no fault and compensation handling
is performed. Process instances, faults, and compensations are discussed later in this chapter.

The syntax is very simple and is shown below:

<terminate/>

Now that we have become familiar with loops, delays, empty activities, and process termination (which we will use in
examples in the rest of this chapter) we will go on to fault handling.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/ch4

5 of 5 11.8.2009 10:47

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Fault Handling and Signaling

Business processes specified using BPEL will interact with their partners through operation invocations of web
services. Web services are based on loosely coupled Service Oriented Architecture (SOA). The communication
between web services is done over Internet connections that may or may not be highly reliable. Web services could
also raise faults due to logical errors and execution errors arising from defects in the infrastructure. Therefore BPEL
business processes will need to handle faults appropriately. BPEL processes may also need to signal faults
themselves. Fault handling and signaling is an important aspect of business processes designed using BPEL.

Faults in BPEL can arise in various situations:

When a BPEL process invokes a synchronous web service operation, the operation might return a WSDL fault
message, which results in a BPEL fault.

A BPEL process can explicitly signal (throw) a fault.

A fault can be thrown automatically, for example, when a join failure has occurred. We will discuss join failures
later in this chapter.

The BPEL server might encounter error conditions in the run-time environment, network communications, or
any other such reason. BPEL defines several standard faults; these are listed in Appendix A.

WSDL Faults

WSDL faults occur due to synchronous operation invocations on partner web services. In WSDL, such faults are
denoted with the <fault> element within the <operation> declaration. In BPEL, WSDL faults are identified by the
qualified name of the fault and the target namespace of the corresponding port type used in the operation
declaration.

In the Synchronous Business Travel Process example in the previous chapter, we have used the TravelApproval
operation on the TravelApprovalPT port type with input and output messages. This is shown in the WSDL excerpt
below:

...

<portType name="TravelApprovalPT">

<operation name="TravelApproval">

<input message="tns:TravelRequestMessage" />

<output message="aln:TravelResponseMessage" />

</operation>

</portType>

...

To add fault information to the operation, we first need to define a corresponding message. For simplicity, this
message will be of the xs:string type:

...

<message name="TravelFaultMessage">

<part name="error" type="xs:string" />

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 12 11.8.2009 10:48

</message>

...

Now we will add the fault declaration to the operation signature shown above:

...

<portType name="TravelApprovalPT">

<operation name="TravelApproval">

<input message="tns:TravelRequestMessage" />

<output message="aln:TravelResponseMessage" />

 <fault name="fault" message="tns:TravelFaultMessage" />

</operation>

</portType>

...

WSDL does not require that we use unique fault names within the namespace used to define the operation. This
implies that faults that have the same name and are defined within the same namespace will be considered as the
same fault in BPEL. Keep this in mind when designing web services that can potentially become partners of BPEL
business processes because this can lead to conflicts in fault handling during execution. This is a shortcoming of the
current WSDL version 1.1 fault model, and should be removed in future versions.

Signaling Faults

A business process may sometimes need to explicitly signal a fault. For such a situation, BPEL provides the <throw>
activity. It has the following syntax:

<throw faultName="name" />

BPEL does not require that we define fault names in advance, prior to their use in the <throw> activity. This flexible
approach can also be error-prone because there is no compile-time checking of fault names. Therefore, a typo could
result in a situation where a misspelled fault might not be handled by the designated fault handler.

Faults can also have an associated variable that usually contains data related to the fault. If such a variable is
associated with the fault, we need to specify it when throwing the fault. This is done by using the optional
faultVariable attribute as shown here:

<throw faultName="name" faultVariable="variable-name" />

The following example shows the most straightforward use of the <throw> activity, where a WrongEmployeeName fault
is thrown—no variable is needed. Remember that fault names are not declared in advance:

<throw faultName="WrongEmployeeName" />

The faults raised with the <throw> activity have to be handled in the BPEL process. Fault handling is covered later in
this chapter. Faults that are not handled will not be automatically propagated to the client as is the case in modern
programming languages (Java for example). Rather, the BPEL process will terminate abnormally. Sometimes,
however, we may want to signal faults to clients.

Signaling Faults to Clients in Synchronous Replies

A BPEL process offers operations to its clients through the <receive> activity. If the process wants to provide a
synchronous request/response operation, it sends a <reply> activity in response to the initial <receive>. Remember
that the type of the operation is defined in the WSDL document of the BPEL process. A synchronous request/response

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 12 11.8.2009 10:48

operation is defined as an operation that has an input and an output message and an optional fault message.

If such an operation has the fault part specified, we can use the <reply> activity to return a fault instead of the
output message. The syntax of the <reply> activity in this case is:

<reply partnerLink="partner-link-name"

portType="port-type-name"

operation="operation-name"

variable="variable-name" <!-- optional -->

 faultName="fault-name" > </reply>

When we specify a fault name to be returned through the <reply> activity, the variable name is optional. If we
specify a variable name, then the variable has to be of the fault message type as defined in WSDL.

Example

Let's modify the BPEL process definition in the synchronous travel example and signal the fault
(TravelFaultMessage) to the client by using the <reply> activity.

First, we need to declare an additional variable that will hold the fault description to return to the client. The variable
is of the TravelFaultMessage type:

...

<variables>

...

<!-- fault to the BPEL client -->

 <variable name="TravelFault" messageType="trv:TravelFaultMessage"/>

</variables>

 ...

Then we return the fault to the BPEL process client. We will need to check if something went wrong in the travel
process. For the purpose of this example, we will check whether the selected flight ticket has been approved. This
information is stored in the confirmationData part of the TravelResponse variable in the Approved element (see
previous chapter for the complete schema definition). Note that this is an oversimplification but it demonstrates how
to return faults. We can use a <switch> activity to determine whether the ticket is approved; then we construct the
fault variable and use the <reply> activity to return it to the client. This is shown in the following code:

...

 <!-- Check if the ticket is approved -->
 <switch>

 <case condition="bpws:getVariableData(
 'TravelResponse',
 'confirmationData',
 '/confirmationData/aln:Approved')='true' ">

 <!-- Send a response to the client -->

 <reply partnerLink="client"
 portType="trv:TravelApprovalPT"
 operation="TravelApproval"
 variable="TravelResponse"/> </case>

 <otherwise>
 <sequence>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 12 11.8.2009 10:48

 <!-- Create the TravelFault variable with fault description -->
 <assign>
 <copy>
 <from expression="string('Ticket not approved')" />
 <to variable="TravelFault" part="error" />
 </copy>
 </assign>

 <!-- Send a fault to the client -->

 <reply partnerLink="client"
 portType="trv:TravelApprovalPT"
 operation="TravelApproval"
 variable="TravelFault"
 faultName="fault" /> </sequence>

 </otherwise>
 </switch>

</sequence>

</process>

If the ticket is not approved, the following fault is signaled to the client:

<TravelFault>

<part name="error">

<error xmlns="http://packtpub.com/bpel/travel/">

Ticket not approved

</error>

</part>

</TravelFault>

We have seen that signaling faults in synchronous replies is easy. Let us now discuss signaling faults in
asynchronous scenarios.

Signaling Faults to Clients in Asynchronous Scenarios

If an asynchronous BPEL process needs to notify the client about a fault, it cannot use the <reply> activity.
Remember that in asynchronous scenarios the client does not wait for the reply—rather the process uses a callback.
To return a fault in callback scenarios, we usually define additional callback operations on the same port type.
Through these callback operations, we can signal that an exceptional situation has prevented normal completion of
the process.

To demonstrate how faults can be propagated to the client using a callback operation, we will use the asynchronous
travel process example. First, we need to modify the travel BPEL process WSDL and introduce another operation
called ClientCallbackFault. This operation consists of an input message called tns:TravelFaultMessage. The
message is of the string type (similar to

the synchronous example). The declaration of the operation and the message is shown in the following code excerpt:

...

<message name="TravelFaultMessage">
 <part name="error" type="xs:string" />
</message>

<portType name="ClientCallbackPT">

<operation name="ClientCallback">

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 12 11.8.2009 10:48

<input message="aln:TravelResponseMessage" />

</operation>

 <operation name="ClientCallbackFault">
 <input message="tns:TravelFaultMessage" />
 </operation>

</portType>

...

We can use the <switch> activity to determine whether the ticket has been approved, as in the synchronous
example. If the ticket is not approved, however, we <invoke> the ClientCallbackFault operation instead of using
the <reply> activity to signal the fault to the client. This is shown in the code excerpt below:

...

<!-- Check if the ticket is approved -->

<switch>

<case condition="bpws:getVariableData('TravelResponse',

'confirmationData',

'/confirmationData/aln:Approved')='true' ">

 <!-- Make a callback to the client -->
 <invoke partnerLink="client"
 portType="trv:ClientCallbackPT"
 operation="ClientCallback"
 inputVariable="TravelResponse" />

</case>

<otherwise>

<sequence>

<!-- Create the TravelFault variable with fault description -->

<assign>

<copy>

<from expression="string('Ticket not approved')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

 <!-- Send a fault to the client -->
 <invoke partnerLink="client"
 portType="trv:ClientCallbackPT"
 operation="ClientCallbackFault"
 inputVariable="TravelFault" />

</sequence>

</otherwise>

</switch>

</sequence>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 12 11.8.2009 10:48

</process>

In the next section, we will look at how to handle faults thrown in BPEL processes.

Handling Faults

Now that we are familiar with how faults are signaled, let us consider how the business process handles faults. When
a fault occurs within a business process (this can be a WSDL fault, a fault thrown by the BPEL process, or any other
type of fault), it means that the process may not complete successfully. The process can complete successfully only if
the fault is handled within a scope. Scopes are discussed in the next section.

Business processes handle faults through fault handlers.

A business process can handle a fault through one or more fault handlers. Within a fault handler, the business
process defines custom activities that are used to recover from the fault and recover the partial (unsuccessful) work
of the activity in which the fault has occurred.

The fault handlers are specified before the first activity of the BPEL process, after the partner links and variables. The
overall structure is shown in the following code excerpt:

<process ...>

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

 <faultHandlers>

 <catch ... >
 <!-- Perform an activity -->
 </catch>
 <catch ... >
 <!-- Perform an activity -->
 </catch>
 ...
 <catchAll> <!-- catchAll is optional -->
 <!-- Perform an activity -->
 </catchAll>
 </faultHandlers>

<sequence>

...

</sequence>

</process>

We can see that within the fault handlers we specify several <catch> activities where we indicate the fault that we
would like to catch and handle. Within a fault handler, we have to specify at least one <catch> or a <catchAll>
activity. Of course, the <catchAll> activity can be specified only once within a fault handler.

Usually we will specify several <catch> activities to handle specific faults and use the <catchAll> to handle all other
faults. The <catch> activity has two attributes, of which we have to specify at least one:

faultName: Specifies the name of the fault to be handled

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

6 of 12 11.8.2009 10:48

faultVariable: Specifies the variable type used for fault data

The flexibility of <catch> activities is high and all the following variations are permissible:

<faultHandlers>

<catch faultName="trv:TicketNotApproved" >

<!-- First fault handler -->

<!-- Perform an activity -->

</catch>

<catch faultName="trv:TicketNotApproved" faultVariable="TravelFault" >

<!-- Second fault handler -->

<!-- Perform an activity -->

</catch>

<catch faultVariable="TravelFault" >

<!-- Third fault handler -->

<!-- Perform an activity -->

</catch>

<catchAll>

<!-- Perform an activity -->

</catchAll>

 </faultHandlers>

We can see that fault handlers in BPEL are very similar to try/catch clauses found in modern programming
languages.

Selection of a Fault Handler

Let us consider the fault handlers listed above and discuss the scenarios for which the <catch> activities will be
selected:

The first <catch> will be selected if the trv:TicketNotApproved fault has been thrown and the fault carries no
fault data.

The second <catch> will be selected if the trv:TicketNotApproved fault has been thrown and carries data of
type matching that of the TravelFault variable.

The third <catch> will be selected if a fault has been thrown whose fault variable type matches the
TravelFault variable type and whose name is not trv:TicketNotApproved.

In all other cases the <catchAll> will be selected.

We can see that the selection of the <catch> activity within fault handlers is quite complicated. It may even happen
that a fault matches several <catch> activities. Therefore, BPEL specifies exact rules to select the fault handler that
will process a fault:

For faults without associated fault data, the fault name will be matched. The <catch> activity with a matching
faultName will be selected if present; otherwise the default <catchAll> handler will be used if present.

For faults with associated fault data, a <catch> activity specifying a matching faultName value and
faultVariable value will be selected, if present. Otherwise, a

<catch> activity with no specified faultName and a matching faultVariable will be selected, if present. Otherwise,
the default <catchAll> handler will be used, if present.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

7 of 12 11.8.2009 10:48

The <catchAll> activity will execute only if no other <catch> activity has been selected.

If no <catch> is selected and <catchAll> is not present, the fault will be re-thrown to the immediately enclosing
scope, if present. Otherwise, the process will terminate abnormally. This situation is similar to explicitly terminating
the process using the <terminate> activity.

Synchronous Example

Let's go back to the synchronous BPEL travel process example to add a fault handlers section. We need to define a
fault handler that will simply signal the fault to the client. In real-world scenarios, a fault handler can perform
additional work to try to recover the work done by an activity or retry the activity itself.

To signal the fault to the client, we use the same TravelFaultMessage message that we defined in the previous
section. Here is an excerpt from the WSDL:

...

<message name="TravelFaultMessage">

<part name="error" type="xs:string" />

</message>

<portType name="TravelApprovalPT">

<operation name="TravelApproval">

<input message="tns:TravelRequestMessage" />

<output message="aln:TravelResponseMessage" />

<fault name="fault" message="tns:TravelFaultMessage" />

</operation>

</portType>

...

We define a fault handler and add a <faultHandlers> section immediately after the <variables> definition and
before the <sequence> activity, as shown below. The fault handler for the trv:TicketNotApproved fault is defined
with the associated TravelFault variable. This handler will use the <reply> activity to signal the fault to the BPEL
client. We will also provide a default <catchAll> handler, which will first create a variable and then use the <reply>
activity to signal the fault to the client:

 ...
 <faultHandlers>
 <catch faultName="trv:TicketNotApproved" faultVariable="TravelFault">

 <reply partnerLink="client"
 portType="trv:TravelApprovalPT"
 operation="TravelApproval"
 variable="TravelFault"
 faultName="fault" />

</catch>

<catchAll>

<sequence>

<!-- Create the TravelFault variable -->

<assign>

<copy>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

8 of 12 11.8.2009 10:48

<from expression="string('Other fault')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

<reply partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelFault"

faultName="fault" />

</sequence>

</catchAll>

</faultHandlers>

 ...

We also have to modify the process itself. Instead of replying to the client (<reply>) in the <switch> activity if the
ticket has not been approved, we will simply throw a fault, which will be caught by the corresponding fault handler.
The fault handler will also catch other possible faults:

...

<!-- Check if the ticket is approved -->

<switch>

<case condition="bpws:getVariableData('TravelResponse',

'confirmationData',

'/confirmationData/aln:Approved')='true' ">

<!-- Send a response to the client -->

<reply partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelResponse"/>

</case>

<otherwise>

<sequence>

<!-- Create the TravelFault variable with fault description -->

<assign>

<copy>

<from expression="string('Ticket not approved')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

 <!-- Throw fault -->
 <throw faultName="trv:TicketNotApproved"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

9 of 12 11.8.2009 10:48

 faultVariable="TravelFault" />

</sequence>

</otherwise>

</switch>

 ...

Faults that are not handled by the BPEL process result in abnormal termination of the process and are not
propagated to the client. In other words, unhandled faults do not cross service boundaries unless explicitly specified
using a <reply> activity as we did in our example. This differentiates BPEL from Java and other languages where
unhandled exceptions are propagated to the client.

Asynchronous Example

In asynchronous BPEL processes, faults are handled in the same way as in synchronous processes by using
<faultHandlers>. We need to define a fault handler that, in our example, will simply forward the fault to the client.
We cannot, however, use the <reply> activity to signal the fault to the client. Instead, we need to define an
additional callback operation and use the <invoke> activity, as we did in our previous example. In this example we
will use the same fault callback operation as in the previous asynchronous example:

...

<message name="TravelFaultMessage">
 <part name="error" type="xs:string" />
</message>

<portType name="ClientCallbackPT">

<operation name="ClientCallback">

<input message="aln:TravelResponseMessage" />

</operation>

 <operation name="ClientCallbackFault">
 <input message="tns:TravelFaultMessage" />
 </operation>

</portType>

...

Now we will define the <faultHandlers> section. The difference to the synchronous example will be that we will use
the <invoke> activity to invoke the newly defined operation instead of the <reply> activity to propagate the fault to
the client:

...

<faultHandlers>

<catch faultName="trv:TicketNotApproved" faultVariable="TravelFault">

 <!-- Make a callback to the client -->
 <invoke partnerLink="client"
 portType="trv:ClientCallbackPT"
 operation="ClientCallbackFault"
 inputVariable="TravelFault" />

</catch>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

10 of 12 11.8.2009 10:48

<catchAll>

<sequence>

<!-- Create the TravelFault variable -->

<assign>

<copy>

<from expression="string('Other fault')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

 <invoke partnerLink="client"
 portType="trv:ClientCallbackPT"
 operation="ClientCallbackFault"
 inputVariable="TravelFault" />

</sequence>

</catchAll>

</faultHandlers>

 ...

Another important question related to fault handling is how the BPEL process can be notified of faults that occurred
in asynchronously invoked partner web service operations. A typical example is the invocation of the American and
Delta Airlines web services in our example. To invoke the operation, we used the <invoke> activity and then a
<receive> activity to wait for the callback.

BPEL provides a way to wait for more than just one message (operation call) using the <pick> activity, which is
described later in this chapter in the Managing Events section. By using <pick> instead of <receive>, our BPEL
process can wait for several incoming messages. One of these can be a message for regular callback; others can be
messages that signal fault conditions. With <pick>, we can even specify a timeout for receiving a callback. For
further information on these issues, please see the Managing Events section.

Inline Fault Handling

The loosely coupled model of web services and the use of Internet connections for accessing them make the
invocation of operations on web services particularly error prone. Numerous situations can prevent a BPEL process
from successfully invoking a partner web service operation, such as broken connections, unavailability of web
services, changes in the WSDL, and so on.

Such faults can be handled in the general <faultHandlers> sections. However, a more efficient way is to handle
faults related to the <invoke> activity directly and not rely on the general fault handlers. The <invoke> activity
provides a shortcut to achieve this—inline fault handlers.

Inline fault handlers can catch WSDL faults for synchronous operations, and also other faults related to
the run-time environment, communications, and so on.

The syntax for inline fault handlers in the <invoke> activity is similar to the syntax of the <faultHandlers> section.
As shown in the code excerpt below we can specify zero or more <catch> activities and we can also specify a
<catchAll> handler. The only difference is that in inline <catch> activities, we have to specify a fault name.
Optionally, we may specify the fault variable:

<invoke ... >

<catch faultName="fault-name" >

<!-- Perform an activity -->

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

11 of 12 11.8.2009 10:48

</catch>

...

<catch faultName="fault-name" faultVariable="fault-variable" >

<!-- Perform an activity -->

</catch>

...

<catchAll>

<!-- Perform an activity -->

</catchAll>

 </invoke>

The following code excerpt shows an inline fault handler for invoking the Employee Travel Status web service from
our BPEL travel process example. Please notice that this also requires modifying the Employee Travel Status WSDL
and declaring an additional fault message for the operation. Because this code is similar to what we did in previous
examples, it is not repeated here again. The following code excerpt demonstrates inline fault handling:

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

input Variable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" >

<catch faultName="emp:WrongEmployeeName" >

<!-- Perform an activity -->

</catch>

<catch faultName="emp:TravelNotAllowed" faultVariable="FaultDesc" >

<!-- Perform an activity -->

</catch>

<catchAll>

<!-- Perform an activity -->

</catchAll>

 </invoke>

This brings us to the thought that it would be useful if we could specify more than one <faultHandlers> section in a
BPEL process. It would be great if we could specify different fault handlers sections for different parts of the process,
particularly for complex processes. This is possible if we use scopes, described in the next section. We will see that
inline fault handling of the <invoke> activity is equal to enclosing the <invoke> activity in a local scope.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

12 of 12 11.8.2009 10:48

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Scopes

Scopes provide a way to divide a complex business process into hierarchically organized parts—scopes. Scopes
provide behavioral contexts for activities. In other words scopes address the problem that we identified in the
previous section and allow us to define different fault handlers for different activities (or sets of activities gathered
under a common structured activity, such as <sequence> or <flow>). In addition to fault handlers, scopes also
provide a way to declare variables that are visible only within the scope. Scopes also allow us to define local
correlation sets, compensation handlers, and event handlers. We will discuss these topics later in this chapter.

The code excerpt below shows how scopes are defined in BPEL. We can specify <variables>, <correlationSets>,
<faultHandlers>, <compensationHandlers>, and <eventHandlers> locally for the scope:

<scope>

<variables>

<!-- Variables definitions local to scope -->

</variables>

<correlationSets>

<!-- Correlation sets will be discussed later in this chapter -->

</correlationSets>

<faultHandlers>

<!-- Fault handlers local to scope -->

</faultHandlers>

<compensationHandler>

<!-- Compensation handlers will be discussed later in this chapter -->

</compensationHandler>

<eventHandlers>

<!-- Event handlers will be discussed later in this chapter -->

</eventHandlers>

activity

</scope>

Each scope has a primary activity. This is similar to the overall process structure, where we have said that a BPEL
process also has a primary activity. The primary activity, often a <sequence> or <flow>, defines the behavior of a
scope for normal execution. Fault handlers and other handlers define the behavior for abnormal execution scenarios.

The primary activity of a scope can be a basic activity such as <invoke> or it can be a structured activity such as
<sequence> or <flow>. Enclosing the <invoke> activity with a scope and defining the fault handlers is equivalent to
using inline fault handlers. The inline fault handler shown in the previous section is equal to the following scope:

<scope>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 12 11.8.2009 10:50

<faultHandlers>

<catch faultName="emp:WrongEmployeeName" >

<!-- Perform an activity -->

</catch>

<catch faultName="emp:TravelNotAllowed" faultVariable="Description" >

<!-- Perform an activity -->

</catch>

<catchAll>

<!-- Perform an activity -->

</catchAll>

</faultHandlers>

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" >

</invoke>

 </scope>

If the primary activity of a scope is a structured activity, it can have many nested activities where the nesting depth
is arbitrary. The scope is shared by all nested activities. A scope can also have nested scopes with arbitrary depth.

The variables defined within a scope are only visible within that scope. Fault handlers attached to a scope handle
faults of all nested activities of a scope. Faults not caught in a scope are re-thrown to the enclosing scope. Scopes in
which faults have occurred are considered to have ended abnormally even if a fault handler has caught the fault and
not re-thrown it.

Example

To demonstrate how scopes can be used in BPEL processes, we will rewrite our asynchronous travel process example
and introduce three scopes:

In the first scope we will retrieve the employee travel status (RetrieveEmployeeTravelStatus).

In the second scope we will check the flight availability with both airlines (CheckFlightAvailability).

In the third scope we will call back to the client (CallbackClient).

We will also declare those variables that are limited to a scope locally within the scope. This will reduce the number
of global variables and make the business process easier to understand. The major benefit of scopes is the capability
to define custom fault handlers, which we will also implement. The high-level structure of our travel process will be
as follows:

<process ...>

<partnerLinks/>...</partnerLinks>

<variables>...</variables>

<faultHandlers>

<catchAll>...</catchAll>

</faultHandlers>

<sequence>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 12 11.8.2009 10:50

<!-- Receive the initial request for business travel from client -->

<receive .../>

 <scope name="RetrieveEmployeeTravelStatus">

<variables>...</variables>

<faultHandlers>

<catchAll>...</catchAll>

</faultHandlers>

<sequence>

<!-- Prepare the input for Employee Travel Status Web Service -->

<!-- Synchronously invoke the Employee Travel Status Web Service -->

<!-- Prepare the input for AA and DA -->

</sequence>

 </scope>

 <scope name="CheckFlightAvailability">

<variables>...</variables>

<faultHandlers>

<catchAll>...</catchAll>

</faultHandlers>

<sequence>

<!-- Make a concurrent invocation to AA and DA -->

<flow>

<!-- Async invoke the AA web service and wait for the callback -->

<!-- Async invoke the DA web service and wait for the callback -->

</flow>

<!-- Select the best offer and construct the TravelResponse -->

</sequence>

 </scope>

<scope name="CallbackClient">

<faultHandlers>...</faultHandlers>

<!-- Check if the ticket is approved -->

 </scope>

</sequence>

</process>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 12 11.8.2009 10:50

To signal faults to the BPEL process client, we will use the ClientCallbackFault operation on the client partner link,
which we defined in the previous section. This operation has a string message, which we will use to describe the
fault. In real-world scenarios the fault message is more complex and includes a fault code and other relevant
information.

Let us start with the example. The process declaration and the partner links have not changed:

<process name="Travel"

targetNamespace="http://packtpub.com/bpel/travel/"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/" xmlns:trv="http://packtpub.com
/bpel/travel/"

xmlns:emp="http://packtpub.com/service/employee/"

xmlns:aln="http://packtpub.com/service/airline/" >

<partnerLinks>

<partnerLink name="client"

partnerLinkType="trv:travelLT"

myRole="travelService"

partnerRole="travelServiceCustomer"/>

<partnerLink name="employeeTravelStatus"

partnerLinkType="emp:employeeLT"

partnerRole="employeeTravelStatusService"/>

<partnerLink name="AmericanAirlines"

partnerLinkType="aln:flightLT"

myRole="airlineCustomer"

partnerRole="airlineService"/>

<partnerLink name="DeltaAirlines"

partnerLinkType="aln:flightLT"

myRole="airlineCustomer"

partnerRole="airlineService"/>

</partnerLinks>

 ...

The variables section will now define only global variables. These are TravelRequest, FlightDetails,
TravelResponse, and TravelFault. We have reduced the number of global variables, but we will have to declare
other variables within scopes:

...

<variables>

<!-- input for this process -->

<variable name="TravelRequest"

messageType="trv:TravelRequestMessage"/>

<!-- input for the Employee Travel Status web service -->

<variable name="FlightDetails"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 12 11.8.2009 10:50

messageType="aln:FlightTicketRequestMessage"/>

<!-- output from BPEL process -->

<variable name="TravelResponse"

messageType="aln:TravelResponseMessage"/>

<!-- fault to the BPEL client -->

<variable name="TravelFault"

messageType="trv:TravelFaultMessage"/>

</variables>

 ...

Next we define the global fault handlers section. Here we use the <catchAll> activity, through which we handle all
faults not handled within scopes. We will signal the fault to the BPEL client:

...

<faultHandlers>

<catchAll>

<sequence>

<!-- Create the TravelFault variable -->

<assign>

<copy>

<from expression="string('Other fault')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallbackFault"

inputVariable="TravelFault" />

</sequence>

</catchAll>

</faultHandlers>

 ...

The main activity of the BPEL process will still be <sequence>, and we will also specify the <receive> activity to wait
for the incoming message from the client:

...

<sequence>

<!-- Receive the initial request for business travel from client -->

<receive partnerLink="client"

portType="trv:TravelApprovalPT"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 12 11.8.2009 10:50

operation="TravelApproval"

variable="TravelRequest"

createInstance="yes" />

 ...

First Scope

Now let's define the first scope for retrieving the employee travel status. Here we will first declare two variables
needed for the input and output messages for web service operation invocation:

...

<scope name="RetrieveEmployeeTravelStatus">

<variables>

<!-- input for the Employee Travel Status web service -->

<variable name="EmployeeTravelStatusRequest"

messageType="emp:EmployeeTravelStatusRequestMessage" />

<!-- output from the Employee Travel Status web service -->

<variable name="EmployeeTravelStatusResponse"

messageType="emp:EmployeeTravelStatusResponseMessage" />

</variables>

 ...

Next we will define the fault handlers section for this scope. We will use the <catchAll> activity to handle all faults,
including Employee web service WSDL faults, communication faults, and other run-time faults. We will signal all
faults to the client, although in real-world scenarios we could invoke another web service or perform other recovery
operations:

...

<faultHandlers>

<catchAll>

<sequence>

<!-- Create the TravelFault variable -->

<assign>

<copy>

<from expression= "string('Unable to retrieve employee travel status')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallbackFault"

inputVariable="TravelFault" />

<terminate/>

</sequence>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

6 of 12 11.8.2009 10:50

</catchAll>

</faultHandlers>

 ...

Next we will start a sequence (which is the main activity of the scope) and prepare the input variable, invoke the
Employee web service, and prepare the input for both airlines' web services:

...

<sequence>

<!-- Prepare the input for the Employee Travel Status Web Service -->

<assign>

<copy>

<from variable="TravelRequest" part="employee"/>

<to variable="EmployeeTravelStatusRequest" part="employee"/>

</copy>

</assign>

<!-- Synchronously invoke the Employee Travel Status Web Service -->

<invoke partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" />

<!-- Prepare the input for AA and DA -->

<assign>

<copy>

<from variable="TravelRequest" part="flightData"/>

<to variable="FlightDetails" part="flightData"/>

</copy>

<copy>

<from variable="EmployeeTravelStatusResponse" part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>

</copy>

</assign>

</sequence>

</scope>

 ...

Second Scope

In the second scope we check the flight availability with both airlines' web services. First we declare two variables for
storing output from both web service operations:

...

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

7 of 12 11.8.2009 10:50

<scope name="CheckFlightAvailability">

<variables>

<!-- output from American Airlines -->

<variable name="FlightResponseAA"

messageType="aln:TravelResponseMessage"/>

<!-- output from Delta Airlines -->

<variable name="FlightResponseDA"

messageType="aln:TravelResponseMessage"/>

</variables>

 ...

Next we define the fault handlers section, where we use the <catchAll> activity similarly to in the first scope:

...

<faultHandlers>

<catchAll>

<sequence>

<!-- Create the TravelFault variable -->

<assign>

<copy>

<from expression= "string('Unable to invoke airline web service')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallbackFault"

inputVariable="TravelFault" />

<terminate/>

</sequence>

</catchAll>

</faultHandlers>

 ...

The main activity of the second scope will be a <sequence> in which we will first concurrently invoke both airlines'
web services using a <flow> activity and then select the best offer using a <switch> activity:

...

<sequence>

<!-- Make a concurrent invocation to AA and DA -->

<flow>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

8 of 12 11.8.2009 10:50

<sequence>

<!-- Async invoke of the AA web service

 and wait for the callback -->

<invoke partnerLink="AmericanAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<receive partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseAA" />

</sequence>

<sequence>

<!-- Async invoke of the DA web service

 and wait for the callback -->

<invoke partnerLink="DeltaAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<receive partnerLink="DeltaAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseDA" />

</sequence>

</flow>

<!-- Select the best offer and construct the TravelResponse -->

<switch>

<case condition="bpws:getVariableData('FlightResponseAA', 'confirmationData','/confirmationData/aln:Price')

<= bpws:getVariableData('FlightResponseDA', 'confirmationData','/confirmationData/aln:Price')">

<!-- Select American Airlines -->

<assign>

<copy>

<from variable="FlightResponseAA" />

<to variable="TravelResponse" />

</copy>

</assign>

</case>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

9 of 12 11.8.2009 10:50

<otherwise>

<!-- Select Delta Airlines -->

<assign>

<copy>

<from variable="FlightResponseDA" />

<to variable="TravelResponse" />

</copy>

</assign>

</otherwise>

</switch>

</sequence>

</scope>

 ...

Third Scope

In the third scope we call back to the BPEL client. For this scope we do not need additional variables. However, we
define a fault handler to handle the TicketNotApproved fault. Therefore we explicitly specify the fault name and the
fault variable. Note that we do not use the <catchAll> activity in this fault handlers section, so all unhandled faults
will be re-thrown to the main process fault handler:

...

<scope name="CallbackClient">

<faultHandlers>

<catch faultName="trv:TicketNotApproved"

faultVariable="TravelFault">

<!-- Make a callback to the client -->

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallbackFault"

inputVariable="TravelFault" />

</catch>

</faultHandlers>

 ...

The main activity of this scope is the <switch> activity, where we check if the flight ticket has been approved:

...

<!-- Check if the ticket is approved -->

<switch>

<case condition="bpws:getVariableData('TravelResponse',

'confirmationData',

'/confirmationData/aln:Approved')='true' ">

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

10 of 12 11.8.2009 10:50

<!-- Make a callback to the client -->

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallback"

inputVariable="TravelResponse" />

</case>

<otherwise>

<sequence>

<!-- Create the TravelFault variable with fault description -->

<assign>

<copy>

<from expression="string('Ticket not approved')" />

<to variable="TravelFault" part="error" />

</copy>

</assign>

<!-- Throw fault -->

<throw faultName="trv:TicketNotApproved"

faultVariable="TravelFault" />

</sequence>

</otherwise>

</switch>

</scope>

</sequence>

</process>

Serializable Scopes

For each scope we can specify whether we require concurrency control over shared variables. We will need such
control if, in our scenario, more than one instance uses shared variables concurrently. This can occur, for example, if
we use an event handler through which we react to an event while the main process is executing. This is discussed
later in this chapter.

Scopes that require concurrency control are called serializable scopes. In serializable scopes, access to all shared
variables is serialized; in other words, concurrency is prohibited. This guarantees that there will be no conflicting
situations if several concurrent scopes access the same set of shared variables. Conflicting operations are in this case
all read/write and write-only activities, such as assignments, incoming messages stored in variables, etc. The
semantics of serializable scopes are similar to the serializable transaction isolation level.

We denote a scope as serializable using the optional attribute variableAccessSerializable and setting it to yes.
The default value of this attribute is no. Serializable scopes must not contain other serializable scopes (but may
contain scopes that are not marked as serializable). The fault handlers associated with the scope also share the
serializability. The code excerpt below shows how to declare a scope as serializable:

<scope variableAccessSerializable="yes" >

...

</scope>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

11 of 12 11.8.2009 10:50

At the time of writing this book, not all BPEL severs have supported this feature, so it is wise to check for support
before relying on the serializable behavior.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

12 of 12 11.8.2009 10:50

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Compensation

Compensation, or undoing steps in the business process that have already completed successfully, is one of the most
important concepts in business processes. Let us discuss the compensation on our travel process and suppose that in
addition to checking the flight availability, our business process would also have to confirm the flight tickets, make
the payments, reserve a hotel room, and make the payment for the hotel room. If the business travel is canceled (for
various reasons) the reservation and payment activities would have to be undone—compensated. In business
processes, the compensation behavior must be explicitly defined. Therefore, when defining the BPEL process, we
would have to explicitly define how to compensate the flight ticket confirmation, how to compensate the flight ticket
payment, etc.

The goal of compensation is to reverse the effects of previous activities that have been carried out as
part of a business process that is being abandoned.

Compensation is related to the nature of most business processes, which are long running and use asynchronous
communication with loosely coupled partner web services. Business processes are often sensitive in terms of
successful completion because the data they manipulate is sensitive. Because they usually span multiple partners
(often multiple enterprises) special care has to be taken that business processes either fully complete their work or
that the partial (not fully completed) results are undone – compensated.

In enterprise information systems, processes that have not been able to finish all their activities and need to undo
the partial work are usually handled with transactions, more exactly with the ACID distributed transaction model,
such as X/Open DTP (Distributed Transaction Processing). ACID stands for Atomicity, Consistency, Isolation, and
Durability and defines a transaction model that uses data locking and isolation. Such a model works perfectly well in
trusted domains within enterprises under the prerequisite that the duration of transactions can be relatively short.

The problem with business processes is that they usually last a long time, sometimes several hours, sometimes even
a few days. This is much too long for the ACID model, because we cannot afford to lock certain data for such a long
time and to isolate the access to these data.

In business processes compensation is used instead of ACID to reverse the effects of an unfinished process.
Compensation requires that an activity specifies a reverse activity, which can be invoked if it is necessary to undo the
effect of that activity. BPEL supports the concept of compensation with the ability to define compensation handlers,
which are specific to scopes, and calls this feature Long-Running Transactions (LRT).

The concept of compensation and LRTs as defined by BPEL is independent of any transaction protocol and can be
used with various business transaction protocols. Because BPEL is bound to web services it is, however, reasonable to
expect that in most cases the LRTs will be used with the WS-BusinessActivity (WS-Transaction) specification. It has
been described in Chapter 2. The BPEL specification even defines a detailed model of BPEL LRTs based on
WS-BusinessActivity concepts.

It is very important to understand that compensation differs from fault handling. In fault handling a business process
tries to recover from an activity that could not finish normally because an exceptional situation has occurred. The
objective of compensation on the other hand is to reverse the effects of a previous activity or a set of activities that
have been carried out successfully as part of a business process that is being abandoned. Note that the order in
which compensation activities are run is often important. BPEL addresses this aspect with scopes.

Compensation Handlers

To define the compensation activities, BPEL provides compensation handlers. Compensation handlers gather all
activities that have to be carried out to compensate another activity. Compensation handlers can be defined:

For the whole process

For the scope

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 5 11.8.2009 10:51

Inline for the <invoke> activity

The compensation handler for the whole BPEL process is defined immediately after the fault handlers section and
before the main activity of the process, as shown in the next code excerpt:

<process ...>

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<faultHandlers>

...

</faultHandlers>

 <compensationHandler>
 <!-- Compensation activity
 (or several activities within a <sequence>, <flow>,
 or other structured activity) -->
 </compensationHandler>

main activity

</process>

The compensation handler for a scope is also defined after the fault handlers section:

<scope>

<variables>

...

</variables>

<correlationSets>

<!-- Correlation sets will be discussed later in this chapter -->

</correlationSets>

<faultHandlers>

...

</faultHandlers>

 <compensationHandler>
 <!-- Compensation activity
 (or several activities within a <sequence>, <flow>,
 or other structured activity) -->
 </compensationHandler>

<eventHandlers>

<!-- Event handlers will be discussed later in this chapter -->

</eventHandlers>

activity

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 5 11.8.2009 10:51

 </scope>

Sometimes it is reasonable to define a compensation handler for each <invoke> activity. We could define a scope for
each <invoke>. However, BPEL provides a shortcut where we can inline the compensation handler rather than
explicitly using an immediately enclosing scope. This is similar to the inline capability of fault handlers. The syntax is
shown below:

<invoke ... >

 <compensationHandler>

 <!-- Compensation activity
 (or several activities within a <sequence>, <flow>,
 or other structured activity) -->
 </compensationHandler>

 </invoke>

The syntax of the compensation handler is the same for all three cases: we specify the activity that has to be
performed for compensation. This can be a basic activity such as <invoke> or a structured activity such as
<sequence> or <flow>.

Example

Let us suppose that within a business process we will invoke a web service operation through which we will confirm
the flight ticket. The compensation activity would be to cancel the flight ticket. The most obvious way to do this is to
define the inline compensation handler for the <invoke> activity as shown in the following example:

<invoke name="TicketConfirmation"

partnerLink="AmericanAirlines"

portType="aln:TicketConfirmationPT"

operation="ConfirmTicket"

inputVariable="FlightDetails"

outputVariable="Confirmation" >

<compensationHandler>

<invoke partnerLink="AmericanAirlines"

portType="aln:TicketConfirmationPT"

operation="CancelTicket"

inputVariable="FlightDetails"

outputVariable="Cancellation" />

</compensationHandler>

 </invoke>

Let us now suppose that the business process performs two operations in a sequence. First it confirms the ticket and
then makes the payment. To compensate these two activities we could define an inline compensation handler for
both <invoke> activities. Alternatively, we could also define a scope with a dedicated compensation handler, as
shown in the example that follows:

<scope name="TicketConfirmationPayment" >

<compensationHandler>

<invoke partnerLink="AmericanAirlines"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 5 11.8.2009 10:51

portType="aln:TicketConfirmationPT"

operation="CancelTicket"

inputVariable="FlightDetails"

outputVariable="Cancellation" />

<invoke partnerLink="AmericanAirlines"

portType="aln:TicketPaymentPT"

operation="CancelPayment"

inputVariable="PaymentDetails"

outputVariable="PaymentCancellation" />

</compensationHandler>

<invoke partnerLink="AmericanAirlines"

portType="aln:TicketConfirmationPT"

operation="ConfirmTicket"

inputVariable="FlightDetails"

outputVariable="Confirmation" />

<invoke partnerLink="AmericanAirlines"

portType="aln:TicketPaymentPT"

operation="PayTicket"

inputVariable="PaymentDetails"

outputVariable="PaymentConfirmation" />

 </scope>

Which approach is better depends on the nature of the business process. In most cases we will define inline
compensation handlers or compensation handlers within scopes. In the global BPEL process compensation handler,
we will usually invoke compensation handlers for specific scopes and thus define the order in which the
compensation should perform. Let's have a look at how to invoke a compensation handler.

Invoking Compensation Handlers

Compensation handlers can be invoked only after the activity that is to be compensated has completed normally. If
we try to compensate an activity that has completed abnormally, nothing will happen because an <empty> activity
will be invoked. This is useful because it is not necessary to track the state of activities to know which can be
compensated and which cannot.

BPEL provides the <compensate> activity to invoke a compensation handler. The syntax is simple and is shown below.
The <compensate> activity has an optional scope attribute through which we can specify which compensation handler
should be invoked. We have to specify the name of the scope. To invoke the inline compensation handler, we specify
the name of the <invoke> activity:

<compensate scope="name" />

To invoke the compensation handler for the TicketConfirmationPayment scope (shown in the previous section) we
could simply write:

<compensate scope="TicketConfirmationPayment" />

To invoke the inline compensation handler for the TicketConfirmation <invoke> activity (also shown in the previous
section) we write:

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 5 11.8.2009 10:51

<compensate scope="TicketConfirmation" />

If we invoke a compensation handler for a scope that has no compensation handler defined, the default handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse order of completion
(remember that the order in which compensations are performed is often important). This behavior is also performed
if we use the <compensate> activity without specifying the scope name.

Compensation handlers can be explicitly invoked only from:

The fault handler of the scope that immediately encloses the scope for which compensation should be
performed

The compensation handler of the scope that immediately encloses the scope for which compensation should
be performed

The compensation handler defined for the whole BPEL process can be invoked only after the process has completed
normally. Invoking it is specific to the run-time environment (BPEL server). Usually the environment will provide a
command through which the compensation can be invoked. We can control this behavior using the
enableInstanceCompensation attribute, which can be yes or no. The default value of this attribute is no, which
means that the compensation is not allowed.

When a compensation handler is invoked, it sees a frozen snapshot of all variables as they were when
the scope being compensated was completed.

In the compensation we can use the same variables as in regular activities and these variables will have the same
values as when the activity being compensated finished. This means that the compensation handler cannot update
live data in the variables the BPEL process is using. The compensation handler cannot affect the global state of the
business process.

In future versions, BPEL will provide two-way communication between the business process and the compensation
handler. We expect that compensation handlers will be supplemented with input and output parameters.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 5 11.8.2009 10:51

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Managing Events

A business process may have to react on certain events. We already know that a business process specified in BPEL
usually waits for an incoming message using the <receive> activity. This incoming message is the event that
activates the whole process. A business process also often invokes web service operations asynchronously. For such
operations, results are returned using callbacks. The BPEL process often waits for callback messages, which are also
events.

Using the <receive> activity, we can wait for an exactly specified message on a certain port type. Often, however, it
is more useful to wait for more than one message, of which only one will occur. Let us go back to our example, where
we invoked the FlightAvailability operation and waited for the FlightTicketCallback callback. In a real-world
scenario, it would be very useful to wait for several messages, FlightTicketCallback being one of them. The other
messages could include FlightNotAvaliable, TicketNotAvaliable, etc.

Even more useful would be to specify that we will wait for the callback for a certain period of time (for example, 5
minutes). If no callback is received, we continue the process flow. This is particularly useful in loosely coupled
service-oriented architectures, where we cannot rely on web services being available all the time. This way, we could
proceed with the process flow even if American Airlines' web service does not return an offer— we would then invoke
another airline web service operation.

In most business processes, we will need to react on two types of events:

Message events: These are triggered by incoming messages through operation invocation on port types

Alarm events: These are time related and are triggered either after a certain duration or at a specific time.

Pick Activity

BPEL provides the <pick> activity through which we can specify that the business process awaits the occurrence of
one of a set of events. Events can be message events handled using the <onMessage> activity and alarm events
handled using the <onAlarm> activity. For each event we then specify an activity or a set of activities that should be
performed.

The syntax of the <pick> activity is shown below:

<pick>

<onMessage ...>

<!-- Perform an activity -->

</onMessage>

<onMessage ...>

<!-- Perform an activity -->

</onMessage>

...

<onAlarm ...>

<!-- Perform an activity -->

</onAlarm>

...

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 6 11.8.2009 10:52

 </pick>

Within <pick> we can specify several <onMessage> elements and several <onAlarm> elements. The <onAlarm>
elements are optional (we can specify zero or more), but we have to specify at least one <onMessage> element.

Message Events

Both elements take additional attributes. The <onMessage> element is identical to the <receive> activity, and has the
same set of attributes. We have to specify the following attributes:

partnerLink: Specifies which partner link will be used for the invoke, receive, or reply, respectively

portType: Specifies the used port type

operation: Specifies the name of the operation to wait for being invoked

variable: Specifies the name of the variable used to store the incoming message

The syntax is shown in the code excerpt below:

<pick>

 <onMessage partnerLink="name"
 portType="name"
 operation="name"
 variable="name">

 <!-- Perform an activity or a set of activities enclosed by
 <sequence>, <flow>, etc. or throw a fault -->

 </onMessage>

...

 </pick>

Alarm Events

The <onAlarm> element is similar to the <wait> element. We can specify:

A duration expression using a for attribute

A deadline expression using an until attribute

For both expressions we use the same literal format as for the <wait> activity described earlier in this chapter.

Most often we will use the <onAlarm> event to specify duration. A typical example is for a business process to wait for
the callback a certain amount of time, for example 15 minutes. If no callback is received the business process
invokes another operation or throws a fault. The deadline approach is useful for example if the business process
should wait for a callback until an exactly specified time and then throw a fault or perform a backup activity.

The code excerpt below shows examples of both with hard-coded times/dates:

<pick>

<onMessage ...>

<!-- Perform an activity -->

</onMessage>

...

<onAlarm for="'PT15M'">

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 6 11.8.2009 10:52

 <!-- Perform an activity or a set of activities enclosed by
 <sequence>, <flow>, etc. or throw a fault -->
 </onAlarm>

 </pick>

<pick>

<onMessage ...>

<!-- Perform an activity -->

</onMessage>

...

<onAlarm until="'2004-03-18T21:00:00+01:00'">

 <!-- Perform an activity or a set of activities enclosed by
 <sequence>, <flow>, etc. or throw a fault -->
 </onAlarm>

 </pick>

Instead of hard-coding the exact date and time or the duration we can use a variable and access the information
using the getVariableData() function.

Example

Going back to our travel example we could replace the <receive> activity, where the business process waited for the
FlightTicketCallback, with the <pick> activity, where the business process will also wait for the
FlightNotAvaliable and TicketNotAvaliable operations and throw corresponding faults. The business process will
wait no more than 30 minutes, when it will throw a CallbackTimeout fault. The code excerpt is shown overleaf:

<pick>

<onMessage partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseAA">

<empty/>

<!-- Continue with the rest of the process -->

</onMessage>

<onMessage partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightNotAvaliable"

variable="FlightFaultAA">

<throw faultName="trv:FlightNotAvaliable" faultVariable="FlightFaultAA"/>

</onMessage>

<onMessage partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="TicketNotAvaliable"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 6 11.8.2009 10:52

variable="FlightFaultAA">

<throw faultName="trv:TicketNotAvaliable" faultVariable="FlightFaultAA"/>

</onMessage>

<onAlarm for="'PT30M'">

<throw faultName="trv:CallbackTimeout" />

</onAlarm>

 </pick>

For this example to work, we also need to declare the FlightFaultAA variable and to modify the Airline web service
WSDL to add the FlightNotAvaliable and TicketNotAvaliable callback operations. This is not shown here but can
be seen from the example, which can be downloaded from Packt's website.

Event Handlers

The <pick> activity is very useful when we have to specify that the business process should wait for events.
Sometimes, however, we would like to react on events that occur while the business process executes. In other
words, we do not want the business process to wait for the event (and do nothing else but wait). Instead the process
should execute, and still listen to events and handle them whenever they occur.

For this purpose BPEL provides event handlers. If the corresponding events occur, event handlers are invoked
concurrently with the business process. Typical usage of event handlers is to handle a cancellation message from the
client. For example, in our travel process we could define an event handler that would allow the BPEL process client
to cancel the travel at any time.

We can specify event handlers for the whole BPEL process as well as for each scope. Event handlers for the whole
process are specified immediately after the compensation handlers and before the main process activity as shown
below:

<process ...>

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<faultHandlers>

...

</faultHandlers>

<compensationHandler>

...

</compensationHandler>

 <eventHandlers>
 <onMessage ...>
 <!-- Perform an activity -->
 </onMessage>
 ...
 <onAlarm ...>
 <!-- Perform an activity -->
 </onAlarm>
 ...
 </eventHandlers>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 6 11.8.2009 10:52

activity

</process>

Event handlers for the scope are also specified after compensation handlers, as shown in the excerpt below:

<scope>

<variables>

...

</variables>

<correlationSets>

<!-- Correlation sets will be discussed later in this chapter -->

</correlationSets>

<faultHandlers>

...

</faultHandlers>

<compensationHandler>

...

</compensationHandler>

 <eventHandlers>
 <onMessage ...>
 <!-- Perform an activity -->
 </onMessage>
 ...
 <onAlarm ...>
 <!-- Perform an activity -->
 </onAlarm>
 ...
 </eventHandlers>

activity

 </scope>

The syntax of the event handler section is similar to the syntax of the <pick> activity. The only difference is that
within the event handler, we can specify zero or more <onMessage> events and/or zero or more <onAlarm> events.

Message events in event handlers can occur multiple times, even concurrently, while the corresponding
scope is active. We have to take care of concurrency and use serializable scopes if necessary.

Example

Let us go back to the example and define the event handler that will allow the BPEL process client to cancel the
travel at any time. The difficult part here is to define the appropriate activities to be performed when the client does
the cancellation. The simplest solution is to terminate the process, as shown in the example below:

<process name="Travel"

enableInstanceCompensation="yes" ... >

...

<eventHandlers>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 6 11.8.2009 10:52

<onMessage partnerLink="client"

portType="trv:TravelApprovalPT"

operation="CancelTravelApproval"

variable="TravelRequest" >

<terminate/>

</onMessage>

</eventHandlers>

...

</process>

In the real world, we would want to undo some work when a cancellation actually occurs. Since we cannot invoke a
compensation handler from an event handler, a better approach is to terminate the process and invoke the
compensation handler for the whole process. To enable this, we have to set the enableInstanceCompensation
attribute of the <process> tag to yes.

Another possibility would be to specify the alarm event, which would prevent a business process from executing for
too long. The following example shows an alarm using a duration expression of 12 hours. We could use variable data
to specify the duration instead of hard-coding it.

<process name="Travel"

enableInstanceCompensation="yes" ... >

...

<eventHandlers>

<onAlarm for="'PT12H'">

<terminate/>

</onAlarm>

</eventHandlers>

...

</process>

Other usage scenarios depend on the actual business process. Note that the examples shown for the process could
also be defined within scopes. Because the code differences are minimal these examples are not shown.

The event handlers associated with the scopes are enabled when the associated scope starts. The event handlers
associated with the global BPEL process are enabled as soon as the process instance is created. This brings us to the
process lifecycle, which we will discuss in the next section.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

6 of 6 11.8.2009 10:52

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Business Process Lifecycle

A business process specified in BPEL has a well-defined structure. It usually waits for the client to invoke the
process. This is done using the <receive> activity, as we have seen in the previous chapter. A business process can
also use the <pick> activity to wait for the initial incoming message. Then the business process typically invokes
several operations on partner web services and waits for partners to invoke callback operations. The business process
also performs some logic, such as comparison and calculation of certain values. The business process terminates
after all activities have been performed.

We can see that each BPEL process has a well-defined lifecycle. To communicate with partners BPEL uses web
services. Web services provide a stateless model for operation invocation. This means that a web service does not
provide a common approach to store client-dependent information between operation invocations. For example,
consider a shopping cart where a client uses an add operation to add items to the cart. Of course there could be
several simultaneous clients using the shopping cart through the web service. We would like each client to have its
own cart. To achieve this using web services each client would have to pass its identity for each invocation of the add
operation. This is because the web services model is a stateless model—a web service does not distinguish between
different clients.

For business processes a stateless model is inappropriate. Let us consider the business travel scenario where a client
sends a travel order, through which it initiates the business process. The process then communicates with several
web services and first sends a ticket approval to the client. Later it sends a hotel approval and an invoice. There are
usually several concurrent clients using the business travel process. Also, a single client can start more than one
interaction with the business process. The business process has to remember each interaction in order to know to
whom to return the results.

In contrast to stateless web services, BPEL business processes are stateful long-running interactions.

BPEL business processes are stateful and support long-running interactions with a well-defined lifecycle. For each
interaction with the process, a process instance is created. Therefore we can think of the BPEL process definition as
a template for creating process instances. This is similar to the class-object relation where classes represent
templates for creating objects at run time.

In BPEL, we do not create instances explicitly as we would in programming languages (there is no new command for
example). Rather, the creation is implicit and occurs when the process receives the initial message that starts the
process. This can happen within the <receive> or <pick>

Activities, so both activities provide an attribute called createInstance. Setting this attribute to yes indicates that
the occurrence of that activity causes a new instance of the business process to be created.

We usually annotate the initial <receive> or <pick> of each business process with the createInstance attribute.
Going back to our business travel example, this is shown in the excerpt below:

...

<sequence>

<!-- Receive the initial request for business travel from client -->

<receive partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelRequest"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 2 11.8.2009 10:54

 createInstance="yes" /> ...

If, however, we would like to specify more than one operation we can use a special form of the <pick> activity. Using
<pick> we can specify several operations and receiving any one of these messages will result in business process
instance creation. We specify the createInstance attribute for the <pick> activity. However, we can only specify
<onMessage> events; <onAlarm> events are not permitted in this specific form.

The following example shows the initial business process activity, which waits for the TravelApproval or
TravelCancellation operations. Receiving one of these messages results in business process instance creation:

...

<pick createInstance="yes">

<onMessage partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelRequest" >

<!-- Perform activities -->

</onMessage>

<onMessage partnerLink="client"

portType="trv:TravelCancellationPT"

operation="TravelCancellation"

variable="TravelCancel" >

<!-- Perform activities -->

</onMessage>

 </pick>

A business process can be terminated normally or abnormally. Normal termination occurs when all business
process activities complete. Abnormal termination occurs either when a fault occurs within the process scope, or a
process instance is terminated explicitly using the <terminate> activity.

In more complex business processes more than one start activity could be enabled concurrently. Such start activities
are required to use correlation sets.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 2 11.8.2009 10:54

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Correlation and Message Properties

Business processes use a stateful model. When a client starts a business process, a new instance is created. This
instance lives for the duration of the business process. Messages sent to the business process (using operations on
port types and ports) need to be delivered to the correct instance of the business process. We would expect this to
be provided by the run-time environment, such as a BPEL server. This is the case if an appropriate transport
mechanism can be used, such as WS-Addressing. However, in some cases where several partners are involved (for
example if the BPEL process calls service A, which calls service B, and service B makes a direct callback to the BPEL
process), or a lightweight transport mechanism is used that does not provide enough information to explicitly
identify instances (such as JMS), manual correlation is required. In such cases we will have to use specific business
data, such as flight numbers, social security numbers, chassis number, etc.

BPEL provides a mechanism to use such specific business data to maintain references to specific business process
instances and calls this feature correlation. Business data used for correlation is contained in the messages
exchanged between partners. The exact location usually differs from message to message—for example the flight
number in the message from the passenger to the airline might be in a different location than in the confirmation
message from the airline to the passenger etc. To specify which data is used for correlation, message properties are
used.

Message Properties

Messages exchanged between partner web services in a business process usually contain application-specific data
and protocol-specific data. Application-specific data is the data related to the business process. In our example, such
data includes the employee name, employee travel status, travel destination, and dates, etc. To actually transfer this
data (as SOAP messages, for example) additional protocol-specific data has to be added, such as security context,
transaction context, etc. In SOAP, protocol-specific data is usually gathered in the Header section and application-
specific data in the Body section of a SOAP message. However, not all protocols differentiate application- and
protocol-specific data.

In business processes we will always need to manipulate application-specific data, and sometimes even protocol-
specific data. BPEL provides a notion of message properties, which allow us to associate relevant data with names
that have greater significance than just the data types used for such data.

For example, a chassis number can be used to identify a motor vehicle in a business process. The chassis number
will probably appear in several messages and it will always identify the vehicle. Let us suppose that the chassis
number is of type string, because a chassis number consists of numbers and characters. Naming it with a global
property name chassisNo gives this string a greater significance than just the data type string.

Examples of such globally significant data are numerous and include social security numbers, tax payer numbers,
flight numbers, license plate numbers, etc. These data can be denoted as properties whose significance goes beyond
a single business process and can therefore be used for correlation. Other properties will be data significant for a
single business process only, such as uniform identifiers, employee numbers, etc.

Message properties have global significance in business processes and are mapped to multiple
messages. So, it makes sense to name them with global property names.

Message properties are defined in WSDL through the WSDL extensibility mechanism, similarly to partner link types.
However, in contrast to partner link types, the standard BPEL namespace is used: http://schemas.xmlsoap.org
/ws/2003/03/business-process/. The syntax is simple and shown below. We have to define a property name and its
type:

<wsdl:definitions

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

... >

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 7 11.8.2009 10:54

...

 <bpws:property name="name" type="type-name" />

...

</wsdl:definitions>

Let's go back to our travel process example. The flight number is such a significant data element that it makes sense
to define it as a property in the Airline web service WSDL:

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:emp="http://packtpub.com/service/employee/"

xmlns:tns="http://packtpub.com/service/airline/"

targetNamespace="http://packtpub.com/service/airline/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/" >

...

 <bpws:property name="FlightNo" type="xs:string" />

...

</definitions>

Mapping Properties to Messages

Properties are parts of messages, usually embedded in the application-specific part of messages. To map a property
to a specific element (or even attribute) of the message, BPEL provides property aliases. With property aliases, we
map a property to a specific element or attribute of the selected message part. We can then use the property name
as an alias for the message part and the location. This is particularly useful in abstract business processes where we
focus on message exchange description.

Property aliases are defined in WSDL. The syntax is shown below. We have to specify the property name, the
message type, message part, and the query expression to point to the specific element or attribute. The query
expression is written in the selected query language; the default is XPath 1.0:

<wsdl:definitions ...

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

... >

...

 <bpws:propertyAlias propertyName="property-name"
 messageType="message-type-name"
 part="message-part-name"
 query="query-string"/>

...

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 7 11.8.2009 10:54

</wsdl:definitions>

We now define the property alias for the flight number property defined in the previous section. In our travel process
example we have defined the TravelResponseMessage in the airline WSDL:

...

<message name="TravelResponseMessage">

<part name="confirmationData" type="tns:FlightConfirmationType" />

</message>

...

The FlightConfirmationType has been defined as a complex type with the FlightNo element of type xs:string
being one of the elements. For the complete WSDL with the type definition please look at Chapter 3. To define the
alias we write the following code:

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:emp="http://packtpub.com/service/employee/"

xmlns:tns="http://packtpub.com/service/airline/"

targetNamespace="http://packtpub.com/service/airline/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/" >

...

<bpws:property name="FlightNo" type="xs:string" />

...

 <bpws:propertyAlias propertyName="tns:FlightNo"
 messageType="tns:TravelResponseMessage"
 part="confirmationData"
 query="/confirmationData/FlightNo"/>

...

</definitions>

With this, we have defined a global property FlightNo as an alias for the confirmationData part of the
FlightConfirmationType message type on the location specified by the query.

Extracting Properties

To extract property values from variables, BPEL defines an extension function called getVariableProperty, which is
defined in the standard BPEL namespace. The function takes two parameters, the variable name and the property
name, and returns the node that represents the property. The syntax is shown below:

bpws:getVariableProperty ('variableName', 'propertyName')

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 7 11.8.2009 10:54

To extract the FlightNo property from the TravelResponse variable we write the following:

bpws:getVariableProperty ('TravelResponse', 'FlightNo')

The use of properties increases flexibility in extracting relevant data from the message compared to the
getVariableData function. Using properties, we do not have to specify the exact location of the data (such as flight
number), but rather use the property name. If the location changes, we only have to modify the property definition.

Properties and Assignments

Properties can also be used in assignments, which is particularly useful in abstract processes. We can copy a property
from one variable to another using the <assign> activity, as shown in the code excerpt overleaf:

<assign>

<copy>

<from variable="variable-name" property="property-name"/>

<to variable="variable-name" property="property-name"/>

</copy>

</assign>

To copy the FlightNo property from the FlightResponseAA variable to the TravelResponse variable we write the
following:

<assign>

<copy>

<from variable="FlightResponseAA" property="FlightNo"/>

<to variable="TravelResponse" property="FlightNo"/>

</copy>

</assign>

Correlation Sets

Now that we are familiar with properties, let's go back to the problem of correlation of messages. Correlation in BPEL
uses the notion of properties to assign global names to relevant data used for correlation messages (such as flight
number) and to define aliases through which we specify the location of such data in messages.

A set of properties shared by messages and used for correlation is called a correlation set.

When correlated messages are exchanged between business partners, two roles can be defined. The partner that
sends the first message in an operation invocation is the initiator and defines the values of the properties in the
correlation set. Other partners are followers and get the property values for their correlation sets from incoming
messages. Both initiator and followers must mark the first activity that binds the correlation sets.

A correlation set is used to associate messages with business process instances. Each correlation set has a name. A
message can be related to one or more correlation sets. The initial message is used to initialize the values of a
correlation set. The subsequent messages related to this correlation set must have property values identical to the
initial correlation set. Correlation sets in BPEL can be declared globally for the whole process or within scopes. The
syntax is shown below:

<correlationSets>

<correlationSet name="correlation-set-name"

properties="list-of-properties"/>

<correlationSet name="correlation-set-name"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 7 11.8.2009 10:54

properties="list-of-properties"/>

...

 </correlationSets>

An example of a correlation set definition named VehicleOrder that includes two properties chassisNo and engineNo
is shown below:

<correlationSets>

<correlationSet name="VehicleOrder"

properties="tns:chassisNo tns:engineNo"/>

 </correlationSets>

Going back to our example, let's define a correlation set named TicketOrder with a single property, FlightNo:

<process ... >

<partnerLinks>...</partnerLinks>

<variables>...</variables>

 <correlationSets>
 <correlationSet name="TicketOrder"
 properties="aln:FlightNo"/>
 </correlationSets> ...

Using Correlation Sets

We can use correlation sets in <invoke>, <receive>, <reply>, and the <onMessage> parts of <pick> activities or
event handlers. To specify which correlation sets should be used, we use the <correlation> activity nested within
any of the above-mentioned activities. The syntax is shown below:

<correlations>

<correlation set="name"

initiate="yes|no" <!-- Optional -->

pattern="in|out|out-in" /> <!-- Used in invoke -->

 </correlations>

We must specify the name of the correlation set used and indicate whether the correlation set should be initiated.
The default value of the initiate attribute is no. When we use the correlation with the <invoke> activity, we must
also specify the pattern attribute. The in value specifies that the correlation applies to inbound messages, out to
outbound, and out-in to both messages.

The following example shows how to use correlation sets in a scenario where the BPEL process first checks the flight
availability using an asynchronous <invoke> and then waits for the callback. The callback message contains the flight
number (FlightNo), and is used to initiate the correlation set. Next, the ticket is confirmed using a synchronous
<invoke>. Here the correlation set is used with the out-in pattern. Finally, the result is sent to the BPEL process
client using a callback <invoke> activity. Here the correlation set is used with the out pattern:

...

<sequence>

...

<!-- Check the flight avaliablity -->

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 7 11.8.2009 10:54

<invoke partnerLink="AmericanAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<!-- Wait for the callback -->

<receive partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="TravelResponse" >

 <!-- The callback includes flight no
 therefore initiate correlation set -->
 <correlations>
 <correlation set="TicketOrder"
 initiate="yes" />
 </correlations>

</receive>

...

<!-- Synchrnousy confirm the ticket -->

<invoke partnerLink="AmericanAirlines"

portType="aln:TicketConfirmationPT"

operation="ConfirmTicket"

inputVariable="FlightRespnseAA"

outputVariable="Confirmation" >

 <!-- Use the correlation set to confirm the ticket -->
 <correlations>
 <correlation set="TicketOrder"
 pattern="out-in" />
 </correlations>

</invoke>

...

<!-- Make a callback to the client -->

<invoke partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallback"

inputVariable="TravelResponse" >

 <!-- Use the correlation set to callback the client -->
 <correlations>
 <correlation set="TicketOrder"
 pattern="out" />
 </correlations>

</invoke>

</sequence>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

6 of 7 11.8.2009 10:54

</process>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

7 of 7 11.8.2009 10:54

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Concurrent Activities and Links

In business processes activities often occur concurrently. In BPEL, such concurrent activities are modeled using the
<flow> activity. Activities within <flow> start concurrently as soon as the <flow> is started. The <flow> completes
when all nested activities complete. Gathering nested activities within <flow> is straightforward and very useful for
expressing concurrency scenarios that are not too complicated. We have used it in the examples in this and the
previous chapter.

To express more complex concurrency scenarios, <flow> provides the ability to express synchronization dependencies
between activities. In other words, we can specify which activities can start and when (depending on other activities)
and define dependencies that are more complex than those expressed with a combination of <flow> and <sequence>
activities. For example, we will often specify that a certain activity or several activities cannot start before another
activity or several activities have finished.

We express synchronization dependencies using the <link> construct. For each link we specify a name. Links have to
be defined within the <flow> activity. Link definitions are gathered within a <links> element. This is shown in the
code excerpt below:

<flow>

<links>

<link name="TravelStatusToTicketRequest" />

<link name="TicketRequestToTicketConfirmation" />

</links>

...

</flow>

These links can now be used to link activities together. For actual linking we use standard elements that can be used
with any BPEL activity.

Sources and Targets

For each BPEL activity, whether basic or structured, we can specify two standard elements for linking activities and
expressing synchronization dependencies. These two standard elements are nested within the activity:

<source> is used to annotate an activity as being a source of one or more links.

<target> is used to annotate an activity as being a target of one or more links.

Every link declared within <flow> must have exactly one activity within the flow as its <source>. It must also have
exactly one activity within the flow as its <target>.

A link's target activity can be performed only after the source activity has been finished.

The syntax of the <source> element is shown below. We have to specify the link name, which has to be defined
within the <flow> activity. Optionally we can specify the transition condition. We will say more on transition
conditions later in this section. If the transition condition is not specified, the default value is true.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 11 11.8.2009 10:56

<source linkName="name"

 transitionCondition="boolean-expression" />

The syntax of the <target> element is even simpler. We only have to specify the link name:

<target linkName="name" />

Example

Let's now consider the business travel example. There the process had to invoke the Employee Travel Status web
service first (synchronous invocation) to get the employee travel class information. Then it asynchronously invoked
the American and Delta Airlines' web services to get flight ticket information. Finally, the process selected the best
offer and sent the callback to the BPEL client.

In Chapter 3 we used a combination of <sequence> and <flow> activities to control the execution order. These two
activities allowed us to perform basic synchronization, but they are not appropriate for expressing complex
synchronization scenarios. In such scenarios, we should use links.

To demonstrate how to use links let's use the business travel example, but keep in mind that the scenario of our
example is simple enough to be expressed using a combination of <flow> and <sequence> activities without the need
for links. We will use the example for simplicity reasons. In the real world, we use links only where the scenario is so
complex that it cannot be expressed using a combination of <flow> and <sequence> activities.

We have modified the asynchronous travel example and gathered all activities except the initial <receive> and the
final <invoke> within a single <flow> activity. We have also added the name attribute to each activity. Although this
attribute is optional, we have added it because it simplifies understanding which activities have to be linked:

<process name="Travel"

... >

<partnerLinks>

...

</partnerLinks>

<variables>

...

</variables>

<sequence>

<!-- Receive the initial request for business travel from client -->

<receive name="InitialRequestReceive"

partnerLink="client"

portType="trv:TravelApprovalPT"

operation="TravelApproval"

variable="TravelRequest"

createInstance="yes" />

 <flow>

<!-- Prepare the input for the Employee Travel Status Web Service -->

<assign name="EmployeeInput">

<copy>

<from variable="TravelRequest" part="employee"/>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 11 11.8.2009 10:56

<to variable="EmployeeTravelStatusRequest" part="employee"/>

</copy>

</assign>

<!-- Synchronously invoke the Employee Travel Status Web Service -->

<invoke name="EmployeeTravelStatusSyncInv"

partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" />

<!-- Prepare the input for AA and DA -->

<assign name="AirlinesInput">

<copy>

<from variable="TravelRequest" part="flightData"/>

<to variable="FlightDetails" part="flightData"/>

</copy>

<copy>

<from variable="EmployeeTravelStatusResponse" part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>

</copy>

</assign>

<!-- Async invoke of the AA web service and wait for the callback -->

<invoke name="AmericanAirlinesAsyncInv"

partnerLink="AmericanAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<receive name="AmericanAirlinesCallback"

partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseAA" />

<!-- Async invoke of the DA web service and wait for the callback -->

<invoke name="DeltaAirlinesAsyncInv"

partnerLink="DeltaAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" />

<receive name="DeltaAirlinesCallback"

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

3 of 11 11.8.2009 10:56

partnerLink="DeltaAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseDA" />

<!-- Select the best offer and construct the TravelResponse -->

<switch name="BestOfferSelect">

<case condition="bpws:getVariableData('FlightResponseAA', 'confirmationData','/confirmationData/aln:Price')

<= bpws:getVariableData('FlightResponseDA', 'confirmationData','/confirmationData/aln:Price')">

<!-- Select American Airlines -->

<assign>

<copy>

<from variable="FlightResponseAA" />

<to variable="TravelResponse" />

</copy>

</assign>

</case>

<otherwise>

<!-- Select Delta Airlines -->

<assign>

<copy>

<from variable="FlightResponseDA" />

<to variable="TravelResponse" />

</copy>

</assign>

</otherwise>

</switch>

 </flow>

<!-- Make a callback to the client -->

<invoke name="ClientCallback"

partnerLink="client"

portType="trv:ClientCallbackPT"

operation="ClientCallback"

inputVariable="TravelResponse" />

</sequence>

</process>

Note that all activities gathered within <flow> will start concurrently, which is not what we want. We therefore use
links to express dependencies. First we identify the dependencies:

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

4 of 11 11.8.2009 10:56

The input for the Employee web service (EmployeeInput) has to be prepared before the Employee web service
can be invoked (EmployeeTravelStatusSyncInv).

The invocation (EmployeeTravelStatusSyncInv) of the Employee web service has to be finished before the
input for both airlines' web services can be prepared (AirlinesInput).

The input for both airlines' web services has to be prepared (AirlinesInput) before the process can invoke
the web services of both airlines (AmericanAirlinesAsyncInv and DeltaAirlinesAsyncInv).

The invocation of the American Airlines web service (AmericanAirlinesAsyncInv) has to be finished before
the callback can be received (AmericanAirlinesCallback).

The invocation of the Delta Airlines web service (DeltaAirlinesAsyncInv) has to be finished before the
callback can be received (DeltaAirlinesCallback).

Both callbacks (from American and Delta Airlines: AmericanAirlinesCallback and DeltaAirlinesCallback)
have to be received before the best offer can be selected (BestOfferSelect).

Let us now name the links. We will need the following eight links:

The link from the EmployeeInput to EmployeeTravelStatusSyncInv

The link from the EmployeeTravelStatusSyncInv to the AirlinesInput preparation

Two links form the AirlinesInput preparation to AmericanAirlinesAsyncInv and DeltaAirlinesAsyncInv

The link from AmericanAirlinesAsyncInv to the receive callback AmericanAirlinesCallback

The link from DeltaAirlinesAsyncInv to the receive callback DeltaAirlinesCallback

The link from AmericanAirlinesCallback to BestOfferSelect

The link from DeltaAirlinesCallback to BestOfferSelect

We have to define the links within the <flow> activity, as shown in the code excerpt below:

<flow>

<links>

<link name="EmployeeInputToEmployeeTravelStatusSyncInv" />

<link name="EmployeeTravelStatusSyncInvToAirlinesInput" />

<link name="AirlinesInputToAmericanAirlinesAsyncInv" />

<link name="AirlinesInputToDeltaAirlinesAsyncInv" />

<link name="AmericanAirlinesAsyncInvToAmericanAirlinesCallback" />

<link name="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />

<link name="AmericanAirlinesCallbackToBestOfferSelect" />

<link name="DeltaAirlinesCallbackToBestOfferSelect" />

</links>

 ...

The dependency of links and activities is shown in the following activity diagram:

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

5 of 11 11.8.2009 10:56

Let us now add the <source> and <target> elements to the BPEL process activities:

...

<!-- Prepare the input for the Employee Travel Status Web Service -->

<assign name="EmployeeInput">

 <source linkName="EmployeeInputToEmployeeTravelStatusSyncInv" />

<copy>

<from variable="TravelRequest" part="employee"/>

<to variable="EmployeeTravelStatusRequest" part="employee"/>

</copy>

</assign>

<!-- Synchronously invoke the Employee Travel Status Web Service -->

<invoke name="EmployeeTravelStatusSyncInv"

partnerLink="employeeTravelStatus"

portType="emp:EmployeeTravelStatusPT"

operation="EmployeeTravelStatus"

inputVariable="EmployeeTravelStatusRequest"

outputVariable="EmployeeTravelStatusResponse" >

 <target linkName="EmployeeInputToEmployeeTravelStatusSyncInv" />
 <source linkName="EmployeeTravelStatusSyncInvToAirlinesInput" />

</invoke>

<!-- Prepare the input for AA and DA -->

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

6 of 11 11.8.2009 10:56

<assign name="AirlinesInput">

 <target linkName="EmployeeTravelStatusSyncInvToAirlinesInput" />
 <source linkName="AirlinesInputToAmericanAirlinesAsyncInv" />
 <source linkName="AirlinesInputToDeltaAirlinesAsyncInv" />

<copy>

<from variable="TravelRequest" part="flightData"/>

<to variable="FlightDetails" part="flightData"/>

</copy>

<copy>

<from variable="EmployeeTravelStatusResponse" part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>

</copy>

</assign>

<!-- Async invoke of the AA web service and wait for the callback -->

<invoke name="AmericanAirlinesAsyncInv"

partnerLink="AmericanAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" >

 <target linkName="AirlinesInputToAmericanAirlinesAsyncInv" />
 <source
 linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback" />

</invoke>

<receive name="AmericanAirlinesCallback"

partnerLink="AmericanAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseAA" >

 <target
 linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback" />
 <source linkName="AmericanAirlinesCallbackToBestOfferSelect" />

</receive>

<!-- Async invoke of the DA web service and wait for the callback -->

<invoke name="DeltaAirlinesAsyncInv"

partnerLink="DeltaAirlines"

portType="aln:FlightAvailabilityPT"

operation="FlightAvailability"

inputVariable="FlightDetails" >

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

7 of 11 11.8.2009 10:56

 <target linkName="AirlinesInputToDeltaAirlinesAsyncInv" />
 <source linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />

</invoke>

<receive name="DeltaAirlinesCallback"

partnerLink="DeltaAirlines"

portType="aln:FlightCallbackPT"

operation="FlightTicketCallback"

variable="FlightResponseDA" >

 <target linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />
 <source linkName="DeltaAirlinesCallbackToBestOfferSelect" />

</receive>

<!-- Select the best offer and construct the TravelResponse -->

<switch name="BestOfferSelect">

 <target linkName="AmericanAirlinesCallbackToBestOfferSelect" />
 <target linkName="DeltaAirlinesCallbackToBestOfferSelect" />

<case condition="bpws:getVariableData('FlightResponseAA', 'confirmationData','/confirmationData/Price')

<= bpws:getVariableData('FlightResponseDA', 'confirmationData','/confirmationData/Price')">

<!-- Select American Airlines -->

<assign>

<copy>

<from variable="FlightResponseAA" />

<to variable="TravelResponse" />

</copy>

</assign>

</case>

<otherwise>

<!-- Select Delta Airlines -->

<assign>

<copy>

<from variable="FlightResponseDA" />

<to variable="TravelResponse" />

</copy>

</assign>

</otherwise>

</switch>

 </flow>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

8 of 11 11.8.2009 10:56

With this we have defined synchronization dependencies between activities. Note that according to the BPEL
specification, every link within the <flow> activity must have exactly one activity within the flow as its source and
exactly one activity within the flow as its target. This prevents us from using the same link as the source or target of
two activities.

Transition Conditions

A <source> element specifies that a certain activity defines an outgoing link. When BPEL processes are executed,
outgoing links are evaluated after the activity has finished. Each outgoing link can have a positive or negative status.
This status is important when the decision is made to start the linked activity (denoted with <target>).

In our example, the AmericanAirlinesCallback <receive> activity defines an outgoing link
AmericanAirlinesCallbackToBestOfferSelect. This link is the incoming link of the BestOfferSelect <switch>
activity. The BestOfferSelect <switch> activity has another incoming link,
DeltaAirlinesCallbackToBestOfferSelect, which is the outgoing link of the DeltaAirlinesCallback <receive>
activity.

After the AmericanAirlinesCallback <receive> activity has finished, the outgoing
AmericanAirlinesCallbackToBestOfferSelect link is evaluated. More precisely, the transitionCondition attribute
of the outgoing link is evaluated. If the transitionCondition is evaluated to true, the link status is positive.
Otherwise it is negative.

We have already mentioned that the <source> element has an optional attribute called transitionCondition. We
have also mentioned that if the attribute is omitted, a default value of true is used. In our previous example,
therefore, the outgoing link status was always true.

Let's now modify the example and explicitly add the transition condition. The outgoing link will be positive only if the
flight ticket is approved. This is signaled using the Approved element of the FlightConfirmationType complex type,
which is the confirmationData part of the TravelResponseMessage message, used for the FlightResponseAA and
FlightResponseDA variables (see the previous chapter for corresponding WSDL definitions).

We will use the getVariableData function and extract the Approved element from the confirmationData part of the
message stored in the FlightResponseAA variable. The code is shown below:

...

<!-- Receive the callback -->

 <receive name="AmericanAirlinesCallback"
 partnerLink="AmericanAirlines"
 portType="aln:FlightCallbackPT"
 operation="FlightTicketCallback"
 variable="FlightResponseAA" >

 <target
 linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback" />
 <source linkName="AmericanAirlinesCallbackToBestOfferSelect"
 transitionCondition="bpws:getVariableData(
 'FlightResponseAA',
 'confirmationData',
 '/confirmationData/aln:Approved')='true'" />

</receive>

 ...

We will do the same for the DeltaAirlinesCallback <receive> activity:

...

<!-- Receive the callback -->

 <receive name="DeltaAirlinesCallback"
 partnerLink="DeltaAirlines"
 portType="aln:FlightCallbackPT"
 operation="FlightTicketCallback"
 variable="FlightResponseDA" >

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

9 of 11 11.8.2009 10:56

 <target linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />
 <source linkName="DeltaAirlinesCallbackToBestOfferSelect"
 transitionCondition="bpws:getVariableData(
 'FlightResponseDA',
 'confirmationData',
 '/confirmationData/aln:Approved')='true'" />

</receive>

 ...

Both outgoing links are now evaluated using the transition conditions and statuses can be determined.

Join Conditions and Link Status

The AmericanAirlinesCallbackToBestOfferSelect and the DeltaAirlinesCallbackToBestOfferSelect are the
incoming links for the BestOfferSelect <switch> activity. In order to start the BestOfferSelect activity:

The status of both incoming links has to be determined. As we already know, the status is determined using
the transitionCondition expression.

The join condition for the BestOfferSelect activity has to be evaluated.

The join condition is specified using the standard attribute called joinCondition. This attribute may be specified for
each activity that is the target of a link (has at least one incoming link). If no joinCondition is specified, the default
(for the default expression language XPath 1.0) is the logical disjunction (logical or) of the link status of all incoming
links of this activity. In other words, if the joinCondition is not explicitly defined, all incoming link statuses are
evaluated and the status of at least one incoming link has to be positive. The consequence of evaluating all incoming
link statuses is the synchronization of all incoming activities.

In our example, the default (implicit) join condition for the BestOfferSelect is therefore a disjunction of both
incoming link statuses, the AmericanAirlinesCallbackToBestOfferSelect and the
DeltaAirlinesCallbackToBestOfferSelect. The join condition will be evaluated to true if at least one of the airlines
has approved the flight tickets. Please notice that the incoming link statuses of both links will be evaluated prior the
decision.

Sometimes the default disjunction will not fit our needs and we will want to define our own join condition. To do this
we will use the joinCondition attribute. We have to specify this attribute for the target link activity. In our example
we would define the joinCondition for the BestOfferSelect <switch> activity.

For the joinCondition we can specify any valid Boolean expression using the selected expression language (the
default is XPath 1.0). Often we will also want to check the status of the incoming links. For these purposes BPEL
provides a special function called getLinkStatus. This function is defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/. The syntax is straightforward as we only have to
provide the name of the incoming link as the parameter. The function returns true if the status of the link is positive
and false if the status of the link is negative. This function can be used only in join conditions:

getLinkStatus ('link-name')

Suppose instead of the disjunction of link statuses we would rather use a conjunction. Then we would define the
following joinCondition:

...

<!-- Select the best offer and construct the TravelResponse -->

<switch name="BestOfferSelect"

 joinCondition="bpws:getLinkStatus(
 'AmericanAirlinesCallbackToBestOfferSelect')
 and
 bpws:getLinkStatus(
 'DeltaAirlinesCallbackToBestOfferSelect')" > ...

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

10 of 11 11.8.2009 10:56

Join Failures

Join conditions are evaluated before the activity is started. In our example the join condition would be evaluated to
true only if both link statuses (AmericanAirlinesCallbackToBestOfferSelect and
DeltaAirlinesCallbackToBestOfferSelect) are positive. Positive join condition is required for starting the activity.

If a join condition evaluates to false, a standard joinFailure fault is thrown. A joinFailure can be thrown even if a
join condition is not explicitly specified. In our previous example (before explicitly specifying the join condition) the
default join condition would be used and would be

evaluated to false if both link statuses were negative. This would be the case if neither American nor Delta Airlines
would approve the flight ticket.

Suppressing Join Failures

Sometimes it would be more useful if instead of throwing a joinFailure fault the activity would simply not be
performed without any fault thrown. BPEL provides an attribute through which we can express this behavior. The
attribute is called suppressJoinFailure and is a standard attribute that can be associated with each activity (basic
or structured). The value of the attribute can be either yes or no. The default is no.

In our example we could suppress join failure for the BestOfferSelect <switch> activity as shown below:

...

<!-- Select the best offer and construct the TravelResponse -->

<switch name="BestOfferSelect"

joinCondition="bpws:getLinkStatus('AmericanAirlinesCallbackToBestOfferSelect')

and

bpws:getLinkStatus('DeltaAirlinesCallbackToBestOfferSelect')"

 suppressJoinFailure="yes" > ...

This means that if even one link status is negative, the activity will not be performed and no fault will be thrown—in
other words the activity would be silently skipped. Skipping the activity is equivalent to catching the fault locally
with an <empty> fault handler.

The consequence of skipping an activity is that outgoing links become negative. This way the next activity figures out
that the previous activity has been skipped. In our example, the BestOfferSelect activity does not have outgoing
links.

The default value of the suppressJoinFailure attribute is no. This is because in simple scenarios without complex
graphs such behavior is preferred. In simple scenarios, links without transition conditions are often used. Here the
developers often do not think about join conditions. Suppressing join failures would lead to unexpected behavior
where activities would be skipped.

In complex scenarios with networks of links, the suppression of join failures can be desirable. If such behavior is
desirable for the whole BPEL process, we can set the suppressJoinFailure attribute to yes in the first process
element (often a <sequence>). Skipping activities with join conditions evaluated to false and setting the outgoing link
statuses to negative is called dead-path-elimination. The reason is that in complex networks of links with transition
conditions such behavior results in propagating the negative link status along entire paths until a join condition is
reached that evaluates to true.

With this we have concluded our discussion on concurrent activities, links, and transition conditions. In the next
section, we discuss dynamic partner links.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

11 of 11 11.8.2009 10:56

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Dynamic Partner Links

So far we have discussed BPEL processes where all partner links have been defined at the design time and related to
actual web services. We have used a single partner link for each web service we have communicated with.

In an advanced BPEL process we might want to define the partner link endpoint references at run time. This means
that the BPEL process will dynamically determine which actual web service it will use for a certain invocation, based
on the variable content. This is particularly useful in scenarios where the BPEL process communicates with several
web services that have the same WSDL interface. This has been the case for our travel process example where
American and Delta Airline web services shared the same interface.

To understand how we can define partner link endpoint references dynamically at run time, let us look at how
endpoint references are represented in BPEL. BPEL uses endpoint references as defined by the WS-Addressing. For
each BPEL process instance and for each partner role in a partner link a unique endpoint reference is assigned. We
already know that this assignment can take place at deployment or at run time. To make such an assignment at run
time we use the <assign> activity. There are several ways in which we can use this. We can copy from one partner
link to another using the following syntax:

<assign>

<copy>

<from partnerLink="name" endpointReference="myRole|partnerRole"/>

<to partnerLink="name"/>

</copy>

</assign>

In the <from> activity we have to specify the endpoint role myRole or partnerRole, while in the <to> activity we
always copy to the partnerRole. We can also copy a partner link to a variable:

<assign>

<copy>

<from partnerLink="name" endpointReference="myRole|partnerRole"/>

<to variable="varName"/>

</copy>

</assign>

The most interesting, however, is to copy a variable, expression, or XML literal to a partner link. This way we can
store the partner link endpoint reference in a variable and copy it to the partner link at run time, thus selecting the
service, which will be invoked dynamically. The syntax for copying a variable to partner link is shown below:

<assign>

<copy>

<from variable="varNname"/>

<to partnerLink="name"/>

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 2 11.8.2009 10:57

</copy>

</assign>

The partner link endpoint reference in BPEL is represented as the wsa:EndpointReference XML element defined by
the WS-Addressing. The wsa namespace URL is http://schemas.xmlsoap.org/

ws/2003/03/addressing. The wsa:EndpointReference element is of type wsa:EndpointReferenceType and has the
following structure:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<Address>ServiceURL</Address>

<ReferenceProperties>...</ReferenceProperties> <!-- optional -->

<PortType>PortTypeName</PortType> <!-- optional -->

<ServiceName PortName="...">ServiceName</ServiceName> <!-- optional -->

</EndpointReference>

We can see that the endpoint reference <Address> is the only required element. The <Address> should include a valid
URL of the partner link service.

To dynamically assign an endpoint reference to a partner link we have to declare a variable of element type
wsa:EndpointReference and copy it to the partner link. Alternatively we can hard-code the address into the BPEL
process and copy the XML literal to the partner link. This is shown in the following example. It is assumed that a
service is available on the specified URL:

<assign>

<copy>

<from>

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<Address>

http://localhost:9700/orabpel/default/AmericanAirline

</Address>

</EndpointReference>

</from>

<to partnerLink="Airline"/>

</copy>

</assign>

With this we have concluded the discussion on dynamic partner links. Please refer to Chapter 6 for a working demo.
In the next section, we discuss abstract business processes.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 2 11.8.2009 10:57

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Abstract Business Processes

Although the BPEL name suggests that this is a language for specifying executable business processes, BPEL
supports both executable business processes and abstract business processes. Abstract business processes specify
public message exchange between parties only.

The objective of abstract business processes in BPEL is to specify only the externally observable aspects of process
behavior (often also called public process behavior) without the exact details of how the process executes. Abstract
processes are not executable. An abstract business process should provide a complete description of external
behavior relevant to a partner or several partners it interacts with.

The description of the externally observable behavior of a business process may be related to a single web service or
a set of web services. It might also describe the behavior of a participant in a business process. In the later case the
abstract processes of all partners must be coupled together, usually using a separate global protocol structure
description.

We will define abstract processes mainly for two scenarios. First, with an abstract process we can describe the
behavior of a web service even though we do not know exactly in which business process it will take part. In this
scenario we will use partner links with myRole attributes only. With such an abstract process we can provide a web
service behavioral description that does not place any requirements on the partners except that they respect the
behavior of the web service.

Second, we can use an abstract process to define collaboration protocols among multiple parties and precisely
describe the external behavior of each party. Such abstract processes will usually be defined by large enterprises to
define protocols for their partners, or by vertical standards organizations such as RosettaNet, to define business
protocols for their domains.

Because abstract processes are not executable, the question is: What are they useful for? The most common scenario
is to use abstract processes as a template to define executable processes. Abstract processes can be used to replace
sets of rules usually expressed in natural language, which is often ambiguous. This reduces misunderstandings and
errors. We also expect tools to generate abstract processes for partner web services based on underlying executable
processes.

Abstract processes must specify the abstractProcess attribute of the <process> tag. This attribute should have the
value yes:

<process name="AbstractBusinessTravelProcess"

abstractProcess="yes" ... >

...

</process>

Because abstract processes do not specify the exact process implementation (and are thus not executable), they
differ from executable processes in several syntactical details. On one hand, they are not allowed to use certain BPEL
constructs. On the other hand, some BPEL constructs can only be used in abstract processes. We will list the most
important differences, starting with the functionality not allowed in abstract processes:

The function getVariableData cannot be used.

The assignment activity has a special variant that cannot be used in abstract processes. This is the variant
where we specify the variable, part, and query expression.

There is no checking for conflicting receives in abstract processes.

The <terminate> activity cannot be used.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 2 11.8.2009 10:58

Important functionality allowed only in abstract processes is:

The inputVariable and outputVariable attributes for the <invoke> activity and the input attribute for the
<receive> and <reply> activities are optional.

The inputVariable attribute of the <onMessage> activity is optional.

Variables do not have to be initialized before they are used.

In abstract processes the type checking is not strictly enforced.

Property aliases can be used for addressing message parts and locations.

Abstract processes allow opaque values to be assigned to variables based on non-deterministic choice.

Abstract processes follow the choreography approach of web services composition. However, at the time of writing
this book, it seemed that in the majority of cases, BPEL will be used for executable processes.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 2 11.8.2009 10:58

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Model Driven Approach: Generating BPEL from UML Activity
Diagrams

Through the chapter we have seen that BPEL is a high-level language for specifying business processes. Because
business processes are at such a high level, it is reasonable to think about defining process models using a modeling
language and transforming these models to the BPEL code automatically. This is similar to the Model Driven
Architecture (MDA) developed by the Object Management Group (OMG). The main objective of MDA is to raise the
level of abstraction of development. Business processes are a perfect candidate for this approach.

The MDA approach is not to provide a simple graphical notation and a tool that enables developers to graphically
build BPEL processes. The MDA approach is really about:

Defining a platform-independent model (PIM) of the business process

Defining exact rules that allow automatic mapping of the PIM to platform-specific models (PSM); these
mappings can be done by a tool

In other words, this means that an independent business protocol model could be automatically mapped to several
business process specification languages, BPEL being one of them. Such an approach would raise the abstraction
level even further and make business process modeling independent of the underlying execution language, thus
stimulating companies to invest more in business process modeling.

The fact that the described approach is not a dream has been demonstrated by researchers at IBM/Rational. They
have based business process model development on the Unified Modeling Language (UML) and have defined UML
extensions (a UML profile) for automated business processes. Based on the profile they have also developed a tool
that generates BPEL process definitions and the corresponding WSDL descriptions based on the UML activity
diagrams. This tool and the UML profile are part of the IBM Emerging Technologies Toolkit version (ETTK), which can
be downloaded from alphaWorks: http://www.alphaworks.ibm.com/tech/ettk.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 2 11.8.2009 10:59

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 2 11.8.2009 10:59

User name:
Book: Business Process Execution Language for Web Services

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that
violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of
Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Conclusion

We have seen that BPEL is an efficient language for describing business processes. It provides support for the
complexities of real-world business process implementations but is still relatively easy to learn and use. In this
chapter we have become familiar with the advanced concepts of BPEL, such as loops, process termination, delays,
and deadline and duration expressions. We have addressed fault handling, which is a very important aspect of each
business process. Particularly in BPEL processes, which use loosely coupled web services for partner operations, faults
can occur quite often. We have discussed scopes, which enable us to break the process into several parts. Each part
or scope can have its own variables, correlation sets, fault handlers, compensation handlers, and event handlers. In
addition scopes can provide concurrency control through serialization.

Another very important aspect of business processes is compensation. In business processes consistency has to be
preserved even if a process is abandoned. Because business processes are often long running and span several
partners the usage of ACID transactions is not reasonable. BPEL therefore supports the concept of compensation. The
goal of compensation is to reverse the effects of previous activities that have been carried out as part of a business
process that is being abandoned. We have become familiar with compensation handlers and how to invoke them.
Next we have discussed events and have seen that a business process has to react on message events, which
happen when an operation is invoked on the process, and on alarm events, which can occur at a specific time or after
certain duration.

We have also addressed complex business processes with many concurrent activities and have seen that BPEL
provides links, which enable concurrency control and synchronization using source and target links. Then we have
discussed transition and join conditions, and link statuses. We have seen why and when join failures are thrown and
how to eliminate dead paths using join failure suppression.

We have discussed the business process lifecycle and process instances and have focused on correlation of
messages, another important aspect of BPEL processes. Correlation uses correlation sets to associate messages with
business process instances, and is related to message properties. Message properties have global significance in
business processes and are mapped to multiple messages. We have become familiar with dynamic partner links.
Finally we have discussed abstract business protocols and mentioned the model-driven approach to BPEL process
definition. With this we have covered all the advanced aspects of BPEL. The coming chapters discuss important BPEL
servers.

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

1 of 2 11.8.2009 11:00

http://acmsel.safaribooksonline.com/print?xmlid=1904811817/sectiond0...

2 of 2 11.8.2009 11:00

	04.pdf
	04a.pdf
	04b.pdf
	04c.pdf
	04d.pdf
	04e.pdf
	04f.pdf
	04g.pdf
	04h.pdf
	04i.pdf
	04j.pdf
	04k.pdf

