http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Part 1l: Standards

A detailed survey of current BPM standard models and specifications, including: BPEL; the BPMI
standards (BPMN and BPEL) and the BPMI reference architecture; the WfMC standards (XPDL, WfXML,
WAPI) and the WfMC reference model; web services choreography, its standards (WS-CDL, WSCI,
WSCL), and the distinction between choreography and orchestration; the OMG model-driven
architecture for BPM, and its RFPs for BPDM and BPRI; BPSS and collaboration; and the influence of
XLANG and WSFL on BPEL.

Chapter 5: Business Process Execution Language (BPEL)
Chapter 6: BPMI Standards: BPMN and BPML

Chapter 7: The Workflow Management Coalition (WfMC)
Chapter 8: World Wide Web Consortium (W3C): Choreography

Chapter 9: Other BPM Models

Chapter Five. Business Process Execution Language (BPEL)

The Business Process Execution Language for Web Services (BPEL4AWS, usually shortened to BPEL, which
rhymes with "people™) is, as its name suggests, a language for the definition and execution of business processes.
Though it is not the only standard process language, BPEL is the most popular, and is beginning to saturate the
process space.

There are two common ways to represent business processes: XML and notational. BPEL competes in the XML arena
with BPML, XPDL, and other approaches. Notational languages include Business Process Modeling Notation (BPMN)
and UML activity diagrams. Each type of representation has its merits and, as discussed in Chapter 2, a good BPM
architecture requires both of them.

IBM, Microsoft, and BEA wrote the BPEL specification and subsequently handed it over to the WSBPEL technical
committee of the OASIS organization (of which they are members) for standardization. The conceptual roots of BPEL
coincide exactly with earlier BPM initiatives of each of the three companies: IBM's WSFL, Microsoft's XLANG and
BEA's Process Definition for Java (PD4J) . As discussed in Chapter 3, WSFL is based on Petri nets and XLANG uses
concepts of the pi-calculus; BPEL, consequently, is a mixture of these two theories. PD4J, as discussed later in this
chapter, is the basis for the Java extension to BPEL, known as BPELJ.

This chapter explores several aspects of BPEL:
e Its authors and maintainers
e How to develop a BPEL process

e Java extensions to BPEL

BPEL's support for common BPM patterns

A substantial example of BPEL in action

NOTE

OASIS, or the Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org), is a nonprofit consortium that develops, maintains, and promotes e-business

standards, including ebXML, SGML, UDDI , PKI, and BPEL. Members include Adobe, AMD, BEA, BMC, Citrix,
Computer Associates, Cyclone Commerce, Dell, Documentum, EDS, Entrust, Fujitsu, FUuhdSERV, HP, Hitachi,

1of6 7/29/2007 2:17 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

IBM, IDS Scheer, Intel, IONA, Microsoft, NEC, Netegrity, Nokia, Novell, Oracle, PeopleSoft, Reuters, SAP,
SeeBeyond, Sun, Tibco, Verisign, Vignette, Visa, webMethods, Wells Fargo, and Xerox. The BPEL 1.1
specification is published on the corporate web sites of each of its major authors.

5.1. Anatomy of a Process

The BPEL specification[*] is positioned as a business process extension to existing web services standards. In the
past, web services were limited to stateless interactions; BPEL and other process and choreography languages show
how to build stateful, conversational business processes from web services. BPEL is a rigorous language that builds
on and extends web services for interacting processes.

| T. Andrews, M. Curbera, et al., "Business Process Execution Language for Web Services," Version 1.1. http://www.oasis-open.org,
May 2004. Available at the following URLs: http://dev2dev.bea.com/technologies/webservices/BPELAWS.jsp,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/bpell-1.asp, http://ifr.sap.com/bpeldws/,
http://www.siebel.com/bpel.

A BPEL process definition consists of two types of files:

e Web Services Definition Language (WSDL) files specifying the web service interfaces—partner link types,
properties, port types and operations, message and part—of interest to the process, including services

implemented by and called by the process. WSDL is a well-known technology with many uses besides process
definition.

e BPEL files, each of which encodes in XML form the definition of a process, including its main activities, partner
links, correlation sets, variables, and handlers for compensation, faults, and events.

When combined, the WSDL and the process definition form a business control flow that can act as an interface with
external parties through web services. In a sense, the main steps in a process—the ones that drive the flow—are its
service touchpoints, represented by receive, pick, invoke, and reply activities. The most rigid rule of BPEL
programming is that a process must begin with a receive or pick activity, implying that a process must start by
being called as a service of a particular type. Thereafter, the process's logic is less constrained; it does what is
requires to meet its internal business requirements and its public message interchange agreements.

Figure 5-1 depicts a BPEL travel agency process and its surroundings in a typical BPEL architecture.

Figure 5-1. Anatomy of a BPEL travel agency process

2 of 6 7/29/2007 2:17 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Travel agency process

| BPEL (XML) i | wWSsOL .

g
=4
a
-
BPEL engine
<receives
Receive itinerary | """ "7 - Customer process
i <receives
* * ' Receive customer order
<invoke> <invoke> =invoke> i
Book hotel Book flight Book car] <invoke>
Send itinerary
; Ty ¥ E
: ! <invoke> i | | <receive>
' : Send Confirmation ! Receive Confirmation
v ¥ v
Car
Hotel Airline
rental
W5 W5 WS

The source code is a BPEL XML file and one or more WSDLs. The source is deployed on a BPEL execution engine,
which oversees the running of the process logic. The travel agency process starts by receiving a customer's
itinerary. It then attempts hotel, flight, and rental car bookings, and finally sends a confirmation to the customer. A
corresponding customer process works in concert with the travel agency process; actions in one trigger the other.
Interactions with the booking systems of the hotel, airline, and car rental agency are web service-driven, but,
transparently to the travel agency application, the booking services are traditionally stateless, not process-oriented.
(Chapter 2 develops a comprehensive architectural model featuring a BPEL runtime engine. Chapters 10 and 11
demonstrate the development, deployment, and testing of BPEL processes on the Oracle BPEL Process Manager
platform.)

Figure 5-2 shows a UML class diagram of BPEL's object model, and the overall structure of a process.

Figure 5-2. BPEL overall object model

30f6 7/29/2007 2:17 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

2 WSDL=> [Calch
PartnerLinkType | -fauliName
oles FaultHandler |-l | fauliVarmable
-t
N
: Y Catchall
Parinerlink |
-name Parlnar !
‘type !
-myRale P
-parinerRcle
I
: ‘1 j$] EventHandler
Variable * L
Process
-name 1 1
-element . -isAbstract
-messagdeType L ge| -suppressloinfailure +
-type ’_\J r_"
1
1 14 1 onMessage onflarm
- -parinerLink -for
-portType -until
CorrelationSet -operalion
-vanable
:. mmmmad _mame -cormelation
! -properties
H 1
"
i Activity
=WEDL ==
Property, PropertyAllas
-mame l 1
:Eruﬁr CompensationHandler
Anattlvli]rcmh
also have
handlers and
variables.

Figure 5-3, another UML diagram, describes the types of process activities.

Table 5-1 summarizes the objects depicted in Figure 5-4.

Figure 5-3. BPEL activity object model

4 of 6 7/29/2007 2:17 PM

50f 6

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

<<Structurad>=
Switch
| ==Structuredss
Flow
| ==Structured=>
Recelve Sequence
Invok | ==Hniclured=s
nvoRe Pick Like a process, a scope
has variables; correlation
sel; and fault, event,
I and compensalion handler
Reply
v v =<Snuchureds
_[> Aciivity q_r | Scope
¥l
> < w=ilruciured ==
> 4 While
Compensale Thraw Asgsign Wail Emply

Name
Process

Variable

Property, Property
Alias (from WSDL)

CorrelationSet

Partner Link Type

(from WSDL)

Partner Link

Partner

Compensation

Handler

Fault Handler, Catch,

CatchAll

EventHandler,
onMessage, onAlarm

Activity

Table 5-1. BPEL objects
Description

A business process containing one or more of the subsequent objects.

A variable for use in a process or a scope, with a type based on a WSDL message type, an
XSD element, or an XSD basic type. A process or scope can have zero or more variables.

A property is a token of data from a WSDL message. A property alias is an XPath
expression to find the value of the property.

A set of one or more properties used to correlate message data with the conversational
state of the process. A process or scope can have zero or one correlation sets.

A mapping of web service port types to partner roles.

A process' declaration of which partner links it supports and, for each, which role it
performs and which role its partner is expected to perform. A process can have one or more
partner links.

Not commonly used; a set of partner links. A process can have zero or more partners.

An activity, containing cancellation or rewind logic, to be executed in case a scope or
process that has already completed needs to be reverted back to its initial state. A process
or scope can have zero or one compensation handlers.

A set of handlers to process exceptions, based on fault type, in a process or scope. A
process or scope can have zero or one fault handlers; there is no limit on the number of
catches within the handler.

A set of handles to process unsolicited events, based on event type, in a process or scope.
A process or scope can have zero or one event handlers; there is no limit on the number of
event detectors within the handler.

Base type for a BPEL activity. A process or scope has exactly one activity, though that
activity can be a structured activity that is broken down into smaller pieces.

7/29/2007 2:17 PM

6 of 6

Name
Receive

Invoke

Reply

Compensate

Throw

Assign
Wait

Empty
Switch

Flow
Sequence

Pick

While

Scope

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Description
An activity that receives a SOAP message on an inbound web service.
An activity that calls a partner's web service, either synchronously or asynchronously.

An activity that returns a synchronous reply to an inbound web service call triggered by a
receive.

An activity that triggers the compensation of a given scope or process.

An activity that generates a fault, triggering the fault handler for the given process or
scope.

An activity that copies data from one variable to another.
An activity that pauses the process for a specified duration, or until a specified time.
No-op. Performs no action.

An exclusive-OR structure. Executes the activity for the conditional case that evaluates to
true.

A distinctive parallel activity execution structure with support for directed graph-based flow.
Runs a set of activities sequentially.

Waits for exactly one of several events (including timeouts) to occur. Executes the activity
corresponding to the first event that fires.

Runs an activity in a loop for as long as a given XPath-valued expression is true.

An activity with its own set of handlers, variables, and correlation sets.

A BPEL process can be executable or abstract . An executable process is built to actually run in a
process engine. An abstract process is a protocol definition or an account of the publicly observable
behavior of a given participant. Though in this book we use BPEL strictly for executable purposes, the
motivation for the abstract approach is important to understand. WSDL in isolation describes only the
static structure of a partner's interface: its inbound and outbound services. An abstract process, in
contrast, is behavioral; it describes the control flow exhibited by the partner as its interfaces with its
partners. A BPEL abstract process, in this regard, serves the same purpose as a WSCI interface
(described in Chapter 8).

The BPEL code for an abstract process resembles that of an executable process, except that the
abstract process contains only activities that model public interaction or drive control flow; an abstract
process can use process data but only for the evaluation of conditions that affect control flow.

Abstract processes set the attribute abstractProcess="yes" in their process elements.

EXECUTABLE AND ABSTRACT PROCESSES

7/29/2007 2:17 PM

1of4

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is

strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.2. BPEL Example

The best way to learn a language is to dive into it.This section provides an extended example to illustrate some of
the main elements of the BPEL language. The BPEL process in Example 5-1, which is similar to that presented in
Chapter 10 (and also described in the discussion of state machines in Chapter 3), manages the processing of an
insurance claim.

Example 5-1. BPEL example: InsuranceClaim.bpel

OCONOUTAWNE

<process name="InsuranceClaim"
targetNamespace=""http://acm.org/samples™
suppressJoinFailure="yes"
xmlns:tns=http://acm.org/samples
xmlns=http://schemas.xmlsoap.org/ws/2003/03/business-process/
xmIns:xsd=http://www.w3.0rg/2001/XMLSchema
xmlIns:addressing=http://schemas.xmlsoap.org/ws/2003/03/addressing
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"">

<I--
Partners in the process:
client - app that can initiate and kill
worklist - service that manages manual activities
—-—>
<partnerLinks>
<I--
<partnerLink name="client” partnerLinkType=""tns:InsuranceClaim"
myRole="InsuranceClaimProvider'/>
<partnerLink name="worklist" partnerLinkType="task:TaskManager"
partnerRole="TaskManager" myRole=""TaskManagerRequester'/>
</partnerLinks>

<!-- Process-level variables -->
<variables>
<variable name="status" type=''xsd:string"/>
<variable name="initiateMsg" messageType="tns:InsuranceClaimMsg"/>
<variable name="killEv'" messageType="tns:InsuranceClaimMsg"/>
<variable name='"taskResponse'" messageType=""task:taskMessage'/>
</variables>

<I-- Message correlation to be performed on the ClaimlD field -->
<correlationSets>

<correlationSet name="claim" properties="tns:claimiD"/>
</correlationSets>

<l-- Catch any errors and fix manually -->
<faultHandlers>
<catchAll>
<empty name="PlaceholderForManualFix"/>
</catchAll>
</faultHandlers>

<!-- Globally receive a kill event (correlated with the claim ID from the
original initate) and terminate the process. -->
<eventHandlers>
<onMessage partnerLink="client" portType="tns:InsuranceClaim"
operation="kill" variable="killEv'">
<correlations>
<correlation set="claim” initiate="no"/>
</correlations>
<sequence>
<empty/><!-- Do something, like notify internal systems of kill -->
<terminate name="killClaim"/>

7/29/2007 2:18 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

54 </sequence>

55 </onMessage>

56 </eventHandlers>

57

58 <sequence>

59

60 <I-- We start with a receive activity: get the initiate message. Will
61 correlate on claim set defined earlier

62 -—>

63 <receive partnerLink="client" portType="tns:InsuranceClaim"

64 operation="initiate" variable="initiateMsg" createlnstance="yes"
65 name=""initiateEvent'>

66 <correlations>

67 <correlation set="claim" initiate="yes"/>

68 </correlations>

69 </receive>

70

71 <I-- Let an agent evaluate it. Call worklist partner to do this -->
72 <invoke name="evalClaim" partnerLink="worklist" portType="task:TaskManager"
73 operation="evalClaim" inputVariable="initiateMsg"/>

74

75 <I-- Get either the response or a timeout -->

76 <pick name="analyzePick">

77 <onMessage partnerLink="worklist" portType="task:TaskManagerCallback"
78 operation="onTaskResult" variable=""taskResponse'>

79 <I-- From response extract status and set to variable "status” -->
80 <assign name=''setStatus'>

81 <copy>

82 <from variable=""taskResponse" part="payload"

83 query="/tns:taskMessage/tns:result="/>

84 <to variable="status"/>

85 </copy>

86 </assign>

87 </onMessage>

88 <I-- Timeout! 10 days have passed. Escalate -->

89 <onAlarm for="PT10D">

90 <sequence>

91 <I-- Call partner service to escalate -->

92 <invoke name="evalClaim" partnerLink="worklist"

93 portType="task:TaskManager" operation="escalateClaim"
94 inputVariable="initiateMsg"/>

95 <I-- Get the escalation response -->

96 <receive name=''receiveTaskResult" partnerLink="worklist"
97 portType=""task:TaskManagerCal lback"

98 operation="onTaskResult" variable="taskResponse'/>

99 <I-- From response extract status and set to variable "status® -->
100 <assign name='setStatus'>

101 <copy>

102 <from variable=""taskResponse" part="payload"

103 query="/tns:taskMessage/tns:result="/>

104 <to variable="status'/>

105 </copy>

106 </assign>

107 </sequence>

108 </onAlarm>

109 </pick>

110

111 <I-- Look at result of claim process and act accordingly:

112 "rejected” and "accepted® are good. Anything else, throw a fault -->
113 <switch name-'"resultEval''>

114 <case condition="bpws:getVariableData("status")="rejected"">
115 <empty> <I-- perform rejection actions -->

116 </case>

117 <case condition="bpws:getVariableData("status")="accepted™">
118 <empty> <!-- perform acceptance actions -->

119 </case>

120 <otherwise>

121 <throw name="illegalStatus" faultName="illegalStatus"/>

122 </otherwise>

123 </switch>

124 </sequence>

125 </process>

The underlying business logic for this process is straightforward: when a claim arrives, an agent evaluates it and
determines whether to accept or reject it. If the agent does not respond within 10 days, the activity is escalated to a
manager, who then makes an accelerated accept/reject decision. At any point, the processing can be terminated
with a kill event.

2 of 4 7/29/2007 2:18 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

The code implementing this logic is an XML document with root element process; from that element, we learn that
the name of the process is InsuranceClaim (line 1). The heart of the process is the sequence activity in lines
58-124, which in turn contains a set of child activities and runs them sequentially. In this example , those children
are a receive activity (lines 63-69), an invoke activity (lines 72-73), a pick activity (lines 76-109), and a switch
activity (lines 113-123).

The purpose of the receive activity (lines 63-69) is to listen for an inbound message containing the claims request.
The process, as you will see, has a WSDL interface and implements a web service interface; the receive represents
an inbound operation of that service (in this case, initate, as stated in line 64). The attribute
createlnstance="yes" in line 64 means that this receive activity is the trigger that starts the process.

In the Invoke activity in lines 72-73, the process calls a web service operation, offered by another partner (in this
example, operation evalClaim for partner worklist), to evaluate the claim. The partner service chooses an
insurance agent to evaluate the claim. Several days might pass before the agent makes a decision about the claim,
but the invoke call is asynchronous; it returns immediately, and the process waits for a response in the pick in
lines 76-109.

The pick activity waits for one of two events to occur: the response from the worklist (handled by the onMessage
element in lines 77-87) or a timeout (in onAlarm in lines 89-108). In the former case, the response arrives as
another inbound message; the worklist service calls back the process by invoking its onTaskResult operation (line
78). The assign activity in lines 80-86 extracts the result field from the worklist message and copies it into a
process variable called status (declared in the variables section in line 25), which is used later in the process as a
decision point for acceptance or rejection processing.

CORRELATION METHOD 1: WS-ADDRESSING

How does the process correlate the response with the request made in the invoke? In other words,
how can the process be sure that the response is for the right insurance claim? The answer, in this
case, is the WS-Addressing standard : when the process sends a request to the worklist, it embeds a
unique message ID into the SOAP header; when the worklist responds, it passes back that ID. The
logic is handled at the web services container level, transparent to the BPEL code.

The BPEL specification does not require that the container support WS-Addressing. To use this method
of correlation, check the capabilities of your BPEL platform. This example was test on Oracle's BPEL
Process Manager, which encourages the WP-Addressing approach.

The timeout occurs after 10 days, an interval determined by the condition for="PT10D" in line 89. The timeout
triggers escalation: if, after ten days, no response has arrived from the worklist on the original claim request, the
process uses an invoke to call the worklist's escalateClaim service operation (lines 92-94). Like the earlier invoke,
this call is asynchronous. The receive activity in lines 96-98 waits for the result, which might take several hours or
days to arrive. The assign in lines 100-106 captures the result in the status variable.

Finally, the switch activity in lines 113-132 is an exclusive-OR construct that performs either acceptance or
rejection logic based on the value of the status variable, which records the result returned by the worklist. The
acceptance case is handled in lines 114-116; its logic (not shown in the code example for brevity) probably involves
sending an acceptance letter and a check to the subscriber. The rejection handler in lines 117-119 may involve
sending a rejection letter. If the result is neither an accept nor a reject (the otherwise case in lines 120-122), the
activity throws a fault called illegalStatus, which triggers the faultHandler in lines 37-42. The handler in this
example does very little, but it can have arbitrarily complex exception handling logic.

The requirement to Kill the claim at any point is met by the eventHandlers construct in lines 45-56. The onMessage
handler listens on the inbound ki ll web service operation (lines 46-47), using a BPEL correlation set (lines 48-50)
to ensure that the Kill event is for the same claim as the one under consideration in this instance of the process. The
event handler explicitly terminates the process using the terminate activity in line 53.

CORRELATION METHOD 2: BPEL CORRELATION SET

Unlike WS-Addressing, which matches IDs in the message header, BPEL's correlation mechanism
matches particular data fields embedded in the message body. The receive activity in lines 63-69
populates a correlation set, to be used for subsequent correlations, with data embedded in its
message. In the kill event handler, the data from the kill event is compared with the data in the
correlation set; if it matches, the kill event is processed; if it does not match, the kill event is rejected.

30f4 7/29/2007 2:18 PM

4 of 4

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

The partnerLinks element, in lines 15-21, specifies the web service interface offered by the process, as well as
interfaces that are used by the process. Two partner links are listed: client represents the interface implemented

by the process, which includes the inbound operations to initiate and kill a claim. The client interface is specified in a
WSDL, a portion of which is displayed here:

<portType name="InsuranceClaim'>
<operation name="initiate'>
<input message="tns:InsuranceClaimMsg'/>
</operation>
<operation name="kill">
<input message=""tns:InsuranceClaimMsg"/>
</operation>
</portType>

<plInk:partnerLinkType name="InsuranceClaim">
<pInk:role name="InsuranceClaimProvider'>
<plnk:portType name="tns:InsuranceClaim"/>
</plnk:role>
</plInk:partnerLinkType>

The WSDL includes the definition of a partnerLinkType called InsuranceClaim, which defines a role called
InsuranceClaimProvider, which maps to the port type InsuranceClaim, which in turn defines the initiate and Kill

operations. The client partner link supports the InsuranceClaimProvider role, implying that it implements the kill
and initiate operation of that role's port type.

The worklist partner link is a service that this process calls to evaluate and escalate the claim; worklist calls the
process back with results. The WSDL for worklist has the following port types and partner link types:

<portType name="TaskManager">
<operation name="evalClaim'">
<input message=""tns:taskMessage'/>
</operation>
<operation name="‘escalateClaim'>
<input message='"tns:taskMessage'/>
</operation>
</portType>
<portType name="TaskManagerCallback'>
<operation name="onTaskResult'>
<input message='"'tns:taskMessage'/>
</operation>
</portType>

<plInk:partnerLinkType name="TaskManager''>
<pInk:role name="TaskManager"'>
<pInk:portType name=""tns:TaskManager'/>
</plnk:role>
<plInk:role name="TaskManagerRequester'>
<plnk:portType name="tns:TaskManagerCallback"/>
</plnk:role>
</plnk:partnerLinkType>

The expression myRole="TaskManagerRequester" in line 20 of the process means that the process implements the
TaskManagerCal Iback service, which defines an onTaskResult operation. The expression

partnerRole="TaskManager' means that the worklist partner implements the port type TaskManager with
operations evalClaim and escalateClaim.

7/29/2007 2:18 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.3. BPEL in a Nutshell

The following sections examine the essential language constructs designers will need to understand to create a BPEL
process: the basic process structure, variables and assignments, exception handling and compensation, split and
join, loops, participant exchange, transactions, and extensions.

5.3.1. Basic Process Structure: Start, End, Activities, Sequence
A developer's first BPEL process is not easy to write. Two puzzles face the beginner:

e A BPEL process has exactly one activity (which, of course, can consist of any number of subactivities to any
level of hierarchy). Which activity should that be? Which are allowed? Which are disallowed? Which are
recommended?

e How is the initial inbound event handler set up? Where do you place the receive or pick in the activity
described in the first problem?

The simplest approach, and the one recommended to most developers, is to use a sequence whose first activity is a
receive with createlnstance=""yes", as in the following code example :

<sequence>
<receive . . . createlnstance="yes"™ . . .> . . . </receive>
<!-- other activities -->

</sequence>

This process starts when the receive triggers, then executes the remaining steps sequentially, and exits when the
last activity has completed. Error handling complicates the processing, of course; see the section "Exception
Handling and Compensation" for a discussion.

Another approach is to use a receive within a flow. The receive should not have any inbound links. For example:

<flow>
<receive . . . createlnstance="yes" . . .> . . . </receive>
<!-- other activities -->

</flow>

This process starts when the receive triggers, whereupon the remaining activities in the flow run in parallel, or, if
links are used, in a directed-graph style of execution. (See the section "Split and Join" later in this chapter for more
on flow.) The process finishes when the flow has merged all its activities.

In the advanced category, the BPEL specification includes an example (Section 16.3 of the BPEL 1.1 specification)
with two receive nodes in a flow. The intent is not to choose one or the other events (as with a pick), but to
require both in order to proceed with the remainder of the process. Both nodes compete to start the process, but
because they are in a flow, when one wins, it must wait for the other to trigger and join it in the process. As the
following code example shows, the flow is enclosed in a sequence, so when the flow completes, the other activities
in the process run sequentially, and when they complete, the process exits normally:

<sequence>
<flow>
<receive . . . createlnstance="yes" . . _.>
<correlations>. . .</correlations> <!-- corr required for multi-start -->
</receive>
<receive . . . createlnstance="yes" . . .>
<correlations>. . .</correlations> <!-- corr required for multi-start -->
</receive>
</flow>

1 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

<I-- other activities -->
</sequence>

Here are some novelties to avoid at all costs:
e Do not put basic activities (e.g., assign, empty, or wait) before the initial receive or pick.
e Do not use switch or while as the main activity of the process.

e Do not use a scope as the main activity of the process. The process has everything that a scope
has—handlers, variables, correlation sets..

5.3.2. Variables and Assignments

Most processes need to maintain application data during the course of their execution. The data is initialized when
the process begins and is subsequently read and modified. A BPEL process can define a set of variables, pass them
to web service touchpoints as input or output parameters, and assign all or part of one variable to another.

Formally, a process variable has a name that is unique for its scope and a type that is either a WSDL message type
or an XML Schema element or basic type. A variable is set in one of the following ways:

e Bound to the input of an inbound activity, such as a receive, pick, or eventHandler.
e Bound to the output of a synchronous invoke.
e Assigned a value with the assign activity

The assign activity is defined as a copy of data from a source to a target. The source can be a literal value, an
expression, the value of the whole or part of another process variable, or part of a process variable. Table 5-2 shows
an example for each type.

Table 5-2. Assignment examples

Usage Code
From literal _ _
<variable name="Xx" type="xsd:int'/>
<assign>
<C0py>
<from>1</from>
<to variable="x"/>
</copy>
</assign>

From expression _ _
<variable name="x" type="xsd:int'/>

<assign>
<copy>
<from
expression="bpws:getVariableData("x") + 1'/>
<to variable="x"/>
</copy>
</assign>

Whole co
4 <variable name="x" type="xsd:int'/>

<variable name="y" type="xsd:int'/>

<assign>
<copy>
<from variable="y"/>
<to variable="x"/>
</copy>
</assign>

2 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Usage Code

Partial copy In WSDL
n :

<message name="‘person''>
<part name="‘name" type=''xsd:string'/>
<part name="address' type=''xsd:string'/>
</message>

In BPEL process:
<variable name="person' messageType="person'/>
<variable name="personAddress" type=''xsd:string'/>

<assign>
<copy>
<from variable="person" part="address'/>
<to variable="personAddress"/>
</copy>
</assign>

The built-in BPEL function bpws:getVariableData is used to get the value of a variable. For an XSD element type,
the function can use an XPath expression to extract a particular data token from the XML document. For a WSDL
message type, the function can extract values from any part of the message.

In addition, see the section "The Life Event process" in Chapter 11 for an example of assigning dynamic endpoint
information to a partner link.

5.3.3. Exception Handling and Compensation

A scope is a process code block having its own set of activities and corresponding variables; correlation sets; and
handlers for fault, compensation, and events. A scope is a localized execution context: its variables are visible only
within its boundaries, and its handlers apply only to its activity flow. Scopes are hierarchical; a scope can have
multiple nested subscopes, each of which can in turn have additional subscopes, and so on down the chain; a
process is itself a top-level scope.

5.3.3.1. Compensation handler

Compensation is a transaction that reverses the effects of a previously completed transaction. In many online
transactional applications, updates to one or more systems are made within a local or distributed transaction, and
are not finalized until the transaction is committed; to negate the updates, the application simply rolls back the
transaction. However, business processes often run for such long periods of time that keeping open transactions for
the duration is infeasible. If an earlier step needs to be negated, rather than rolling back its transaction, the process
executes its compensation handler. The following code example shows a handler that invokes a rescind web
service, presumably informing its partner to cancel some activity. The rescind is intended to reverse the update
service invocation in the main flow of the scope block.

<scope hame=''s"'>
<compensationHandler>
<invoke operation="rescind” . . . />
</compensationHandler>

<invoke operation="update" . . ./>
</scope>

The compensation handler for a scope is invoked, using the compensate activity, from the fault handler or
compensation handler of the parent scope. In the following case, the compensation handler for scope inner is called
from the compensation handler of its parent scope outer. The operations update and addToStatement are
compensated by rescind and removeFromStatement:

<scope name="outer'>
<compensationHandler>

<sequence>
<invoke operation='"rescind” . . . />
<compensate scope="'s2"/>

</sequence>

</compensationHandler>

<sequence>
<invoke operation="update"” . . ./>

3 0of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

<scope name="inner'>
<compensationHandler>

<invoke operation="removeFromStatement” . . ./>
</compensationHandler>
<invoke operation="addToStatement™ . . _/>
</scope>
</sequence>

</scope>

5.3.3.2. Fault handler

Compensation is the reversal of a completed scope, and fault handling is the processing of a break in a scope that is
in-flight. When a fault is generated, either implicitly by the BPEL engine or explicitly by a throw activity, control
jumps to the fault handler defined for the given fault type.[5] The fault handler is a set of catch structures,
resembling the following:

[5] If no such handler is defined, the fault is propagated to the parent scope. If the parent has no suitable handler, the fault is
propagated to the parent's parent, and so on, until the topmost scope level—that is, the process level—is reached. If the fault is not
handled at the process level, the process is terminated.

<scope name=''sl1'>
<faultHandlers>
<catch faultName="x:invalidAccount'>

</catch>

<catch faultName="'x:closedAccount">
</catch>

<catchAll">

</catchAll>
</faultHandlers>
</scope>

BPEL faults are uniquely identified by name. Some are standard error types documented in the BPEL specification,
such as uninitializedVariable, which is thrown by the engine when code tries to read the value of an
uninitialized part of a variable. Others are application-specific, such as x: inval idAccount and x:closeAccount,
which are used in the code example to represent illegitimate accesses of an account. Catch handlers are defined for
both of these faults, and the catchall structure handles any faults not accounted for in the other catch structures.
Each handler lists the activities to be performed to handle the fault. The handler can swallow the fault, leading to
the resumption of processing in the scope, or it can rethrow the fault or throw a different fault, thereby propagating
the fault to the parent scope.

The throw activity generates a fault, causing control to be passed to the fault handler defined for the given scope.
In the following code example:

<switch name="routeRequest''>

<case name=''checking". . .> . . . </case>
<case name="'savings'. . .>
<switch name="CheckAcctStatus">
<case name="Open" . . .> . . . </case>
<case name=""Closed"” . . .> <throw faultName="'closedAccount'> </case>
</switch>
</case>
<case name="trust". . .> . . . </case>
<otherwise><throw faultName="invalidAccount"/></otherwise>
</switch>

the terminate activity is used to immediately abort the process, skipping any defined fault handling:

<terminate name="Unrecoverable condition met">

5.3.3.3. Event handler

An event handler enables the scope to react to events, or to the expiration of timers, at any point during the scope's
execution. Two obvious uses are:

4 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Cancellation

The scope defines a handler for a cancellation event. If it receives it, the scope can be terminated, no
matter where it is in its execution.

Escalation
A timer is set on the scope. If it expires, special activities are executed to perform "business escalation.”

The next code example demonstrates these uses. Cancellation is triggered by the message defined by partner link
Customer, port type control ler and operation cancel; the handler throws a fault to terminate the scope.
Escalation occurs after two days (PT2D), at which point the handler performs logic through an invoke.

<scope name='sl1''>
<eventHandlers>
<onMessage partnerLink="Customer" portType="controller"
operation="cancel" variable="cancelEvent'>

<correlations>
<correlation set="controllerSet"” initiate="no"/>
</correlations>
<throw faultName="'x:cancelled"/>
</onMessage>

<onAlarm until="PT2D">
<invoke name="escalation” . . ./>
</onAlarm>
</eventHandlers>
</scope>

5.3.4. Split and Join

BPEL's two activities for split and join —switch and flow—exhibit contrasting styles. switch is a traditional
programmatic control structure for conditional logic. flow is an unusual graph structure with support for parallel
activities connected by guarded links.

5.3.3.4. switch

switch is an exclusive-OR structured activity that consists of one or more case structures, each having a conditional
expression and an associated activity. The activity performed by the switch is that of the first case whose condition
evaluates to true. An optional otherwise clause can be defined with an activity but no condition; that activity is run
only if none of the preceding cases have a true condition.

In the following example, a flow activity is performed if the first condition (variable i has value 1) holds; a
sequence with an assign and switch is executed if the second condition (i = 2) is true. An invoke is run by

default:
<switch>
<case condition="bpws:getVariableData("i")=1">
<flow> . . . </flow>
</case>

<case condition="bpws:getVariableData("i")=2">
<sequence>
<assign . . . />
<switch> . . . </switch>
</sequence>
</case>

<otherwise>
<invoke . . ./>
</otherwise>
</switch>

5.3.3.5. flow

The Flow activity—BPEL's most interesting, unusual, and pedantic construct—models parallel activity execution and
activity synchronization. Depending on how it is configured, flow exhibits a variety of behaviors; to understand
flow, it is best to learn each case—the parallel split and join behavior, link synchronization and dependencies
behaviors, and dead path elimination behavior—using an example and a diagram.

5 of 16 7/29/2007 2:19 PM

6 of 16

5.3.3.5.1. Parallel split and join

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

The first case for Flow is perfectly suited to the P4 patterns for parallel split and join. In the following example (see
Figure 5-4 and the following code), the process invokes in parallel (i.e., splits) web services for partner links A, B,
and C respectively; the order of execution is unpredictable. The flow waits for each contained activity to complete

(i.e., joins them) before exiting. The invocation of the service for partner link D does not occur until each of the

three previous invocation finishes.

Figure 5-4. BPEL flow parallel split and join

4

v

Invoke A

Invoke B

Irve ke C

<flow>
<invoke partnerLink="A" _ . _/>
<invoke partnerLink="B" . . ./>
<invoke partnerLink="C" . . ./>

</flow>

<invoke partnerLink="D" . . ./>

5.3.3.5.2. Links and synchronization dependencies

i

Invoke D

The BPEL flow mechanism offers several features to model the situation where one activity cannot start until one or
more activities on which it depends complete. Specifically, a flow can define a set of links, each originating from a
source activity in the flow and terminating at a target activity in the flow. An activity can be the source as well as
the target of multiple links. In Figure 5-5, for example, A has links to B and C, X has links to B and C, B has a link to

D, and C has a link to E.

Figure 5-5. BPEL synchronization

X

A

Guarded

=2 |%—

|l

Understanding flow in BPEL requires understanding the order in which such activities are executed, and whether a

particular activity is executed at all.

In the current example, initially X and A are run in parallel. Activities B and C must wait for both X and A to

7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

complete because, according to BPEL's flow rules, an activity must wait for each of its incoming links. To complicate
matters, a source activity can define a transition condition on any of its outgoing links (if not defined for a given
link, the condition defaults to true), and a target activity can define a join condition evaluated based on the
transition conditions each of its incoming links. The join condition is optional; if not defined, it defaults to an OR
condition, which is true if any of the link transition conditions is true. The target activity executes only if its join
condition evaluates to true. (The behavior when the join condition is false is examined in the next section.)

Continuing with the example, C does not define a join condition, and hence defaults to OR. That is, C executes if
either X or A (or both) has a true transition condition on its link. Note that C must wait for both source activities to
complete, even though it requires only one to send out a true link. Activity B defines an explicit join condition,
requiring both of its incoming links, from X and A, to be true; B executes only if both X and A have a true transition
condition. The link from A to B has an explicit transition condition (it is "guarded"), whereas the link from X to B is
implicitly true. As for activities D and E: D waits for B to complete, and E waits for C.

The BPEL encoding of this scenario is as follows:

<fFlow>
<links>
<link name="AB"'/>
<link name="AC"/>
<link name="XB"/>
<link name="XC"/>
<link name="BD"/>
<link name="CE"/>

</links>

<invoke partnerLink="A"_ . _.>
<source linkName="AB" transitionCondition=". . ."/>
<source linkName=""AC"/>

</invoke>

<invoke partnerLink="X" >

<source IlnkName-"XB" />
<source linkName="XC" />
</invoke>
<invoke partnerLink="B"
jJjoinCondition="bpws: getLlnkStatus(XB*) and bpws:getLinkStatus("AB")">
<source linkName="BD" />
<target linkName="AB" />
<target linkName="XB" />
</invoke>

<invoke partnerLink="C" . . ./>
<source linkName="CE" />
<target linkName="AC" />
<target linkName="XC" />

</invoke>

<invoke partnerLink="D" . . .>
<target linkName="BD"/>

</invoke>

<invoke partnerLink="E" . >
<target linkName="CE’ />

</invoke>

</flow>

A link can cross activity boundaries. In Figure 5-6, activity S2 is the second activity in the sequence of S1-S2-S3,
but it is also the target of a link from activity X. According to BPEL's flow rules, S2 cannot execute until both S1 and
X have executed. The overall order of execution is S1-X-S2-S3 or X-S1-S2-S3.

Figure 5-6. BPEL cross-boundary link

7 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Sequence

51

5.3.3.5.3. Dead path elimination

By default, if an activity's join condition evaluates to false, BPEL generates a fault called bpws: joinFailure; the
activity is not executed, and control is diverted to a fault handler. In the first of the examples presented in the
previous section, B's join condition fails if either X or A sends a false link to B.

BPEL also supports the semantics of dead path elimination: if the join condition of an activity is false, the activity
doesn't execute but completes immediately and sends false on each of its outgoing links. For example, if B's join
condition fails, and dead path elimination is enforced, B doesn't execute, and its outgoing link to D is set of false,
which, because D's implicit join condition requires the link from B to be true, in turn prevents D's execution. In this
case, the execution sequence is either X-A-C-E or A-X-C-E.

Deciding whether to use dead path elimination semantics is as simple as setting a flag. The attribute
suppressJoinFailure can be set to yes or no (default is no) for any activity. If set to "yes", that activity uses dead
path elimination semantics; otherwise, it uses the semantics of join fault. In the following code example, the flag is
enabled for the entire flow, which means that B, a part of that flow, will use dead path elimination if its join
condition is false.

<flow suppressJoinFailure="yes">
<links>
<link name="AB" />
<link name="AC"/>
<link name="XB"/>
<link name="XC"/>
<link name=""BD"/>
<link name="CE"/>

</links>

<invoke partnerLink="A"_ . _.>
<source linkName="AB" transitionCondition=". . ."/>
<source linkName="AC"/>

</invoke>

<invoke partnerLink="X"_ . _.>

<source linkName="XB" />
<source linkName="XC" />
</invoke>

<invoke partnerLink="B".

joinCondition="bpws: getLlnkStatus(XB*) and bpws:getLinkStatus("AB")">
<source linkName="BD" />
<target linkName="AB" />
<target linkName="XB" />

</invoke>

<invoke partnerLink="C" . />
<source linkName="CE" />
<target linkName="AC" />
<target linkName="XC" />

</invoke>

<invoke partnerLink="D" . >
<target IlnkName—"BD"/>

</invoke>

<invoke partnerLink="E" . >

<target linkName="CE' />

8 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

</invoke>
</flow>

The semantics of dead path elimination are discussed further in Chapter 3.
5.3.5. Loops

BPEL 's sole looping construct is the while activity. Unlike BPML, BPEL does not offer a foreach loop, but an
example of how to iterate through a repeating XML element, a typical use of foreach, is provided in this section.

5.3.5.1. while

The while activity executes a child activity in a loop and evaluates the continuation condition before each iteration.
The child activity is executed if the condition is true; otherwise, the loop exits.

In the following example, the loop iterates over a counter variable i. The integer variable is initially set to 0 and is
incremented by 1 at the end of each loop iteration. The loop runs until i is 5, executing as part of a sequence an
invoke activity and the assign to increment i:

<variable name="i" type='"xsd:integer'/>
<assign>
<copy>
<from expression="0"/>
<to variable="i"/>
</copy>
</assign>

<while condition="bpws:getVariableData(i) != 5">
<sequence>
<invoke . . . />
<assign>
<copy>
<from expression="bpws:getVariableData(i) + 1"/>
<to variable=";"i"/>
</copy>
<assign>
</sequence>
</while>

5.3.5.2. Implementing foreach

Iterating over a set of XML data in BPEL is a comparatively difficult development chore, thanks to BPEL's omission
of, or decision not to include, a foreach loop. The following example shows how iterate over all instances of the
input element described by the following schema:

<element name="ForLoopRequest'>
<complexType>
<sequence>
<element name="input" type="'string" maxOccurs="5" />
</sequence>
</complexType>
</element>

Here is an XML document based on this schema:

<ForLoopRequest>
<input>Foreach</input>
<input> is</input>
<input> possible</input>
<input> after all</input>

</ForEachRequest>

Example 5-2 is an excerpt of a BPEL process that iterates over the repeating elements of such a document.

Example 5-2. Iterating BPEL process

9 of 16 7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

1 <I-- input is a ForLoopRequest.

2 numltems is a count of the "input" elements in the input message

3 currltem is a loop counter that starts at 0 and increases by 1 to numltems
4 theltem is used in the loop to store the value in the currltem position
5 tempExpr is a string used to build XPath in the loop -->

6 <variables>

7 <variable name="input" messageType=""tns:ForLoopRequestMessage' />

8 <variable name="numltems" type=''xsd:int'/>

9 <variable name="currltem” type='xsd:int"/>

10 <variable name="theltem" type=''xsd:string"/>

11 <variable name="trace" type=''xsd:string"/>

12 <variable name='"tempExpr" type="'xsd:string"/>

13 </variables>

14 - .-

15 <I-- Initialize currlitem to O and use XPath count() function to get the number of
16 "input" elements. -->

17 <assign name="getNumltems'>

18 <copy>

19 <from expression="bpws:getVariableData("input","payload",
20 "count(/tns:ForLoopRequest/tns: input)")'></from>

21 <to variable="numltems"/>

22 </copy>

23 <copy>

24 <from expression="number(0)"></from>

25 <to variable="currltem"/>

26 </copy>

27 </assign>

28 - .-

29 <I-- the while loop, ironically named 'foreach"

30 It runs until currltem = numltems -->

31 <while name="foreach"

32 condition="bpws:getVariableData("curriltem®) &It;

33 bpws:getVariableData("numltems®)">

34 <sequence>

35 <assign name="doForEach'>

36 <I-- Increment currltem. Need this for loop condition, as well

37 as XPath index -->

38 <copy>

39 <from expression="bpws:getVariableData("currltem")

40 + 1"></from>

41 <to variable="currltem"/>

42 </copy>

43 <!-- The Xpath expression is of the form:

44 "'/tns:ForLoopRequest/tns:input[currltem]”™ (index is l-based)

45 Build it and store in tempExpr. -->

46 <copy>

47 <from expression="concat("/tns:ForLoopRequest/tns:input[",
48 bpws:getVariableData("currltem"), "]")''></from>
49 <to variable="tempExpr'/>

50 </copy>

51 <I- - Evaluate the expresion and store in "theltem" -->

52 <copy>

53 <from expression="bpws:getVariableData("input",

54 "payload" ,bpws:getVariableData("tempExpr"))">
55 </from>

56 <to variable="theltem"/>

57 </copy>

58 </assign>

59 <I-- Now, do something with "theltem"” -->

60 </sequence>

61 </while>

Intuitively, this code performs the following logic:

numltems = count(/ForLoopRequest/input)
for currltem = 1 to numltems
theltem = /ForLoopRequest/input[currltem]

Table 5-5 maps this intuitive code to the corresponding section in the thorny BPEL code.

10 of 16

7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Table 5-3. ForEach logic

Intended code Actual code

numlitems = Assign rule, lines 19-20.
count(/ForLoopRequest/input)

For currltem = 1 to numltems First, currltem is assigned to O, lines 24-25. The whi le condition appears
in lines 32-33. currltem is incremented in lines 39-41.

theltem = Two assign copies in lines 46-57.
/ForLoopRequest/input[currltem]

5.3.6. Participant Exchange

One of BPEL's strongest notions is that processes communicate with each other as business partners. The partnering
relationships are represented declaratively in the definition of process links, as well as in the actual communication
touch points of the process flow.

5.3.6.1. Partner link types

To begin with, in the WSDL, partner link types map web service port types to partner roles. More formally, a partner
link type has a name and one or two roles, each of which has a name and a reference by name to a port type. A
partner link type with two roles represents a relationship in which partners, such as a buyer and seller, exchange
service calls:
<partnerLinkType name="BuyerSeller'>
<role name="buyer'> <portType name="buyerPT'"/> </role>

<role name="seller'> <portType name="sellerPT"/> </role>
</partnerLinkType>

A partner link type with one role is suitable for interactions where the service does not need to know about its
callers:
<partnerLinkType name="Server'>

<role name="server'> <portType name="serverPT"/> </role>
</partnerLinkType>

5.3.6.2. Partner links

In the BPEL process definition, partner links declare which partner link type roles defined in the WSDL are performed
by the process and which are performed by partners. For example, a buyer process defines the link
BuyerSellerLink, referencing the type BuyerSeller, with myRole set to buyer and partnerRole to seller:

<partnerLink name="BuyerSellerLink' partnerLinkType="BuyerSeller"
myRole="buyer" partnerRole="seller"/>

If the process invokes the server service, it declares a partner link called ServerLink with partnerRole set to
server:

<partnerLink name="ServerLink" partnerLinkType="Server" partnerRole="server"/>

NOTE

In most BPEL examples, a partner link is mapped statically to a particular service endpoint. See Chapter 11
(the section "The Life Event process") for an example of a dynamic partner link, whose endpoint information
is determined at runtime.

5.3.6.3. Partners

BPEL also offers a construct known as a business partner, which has a name and a set of partner links. For
example, a given process participant that is both a seller and a shipper can be defined as SellerShipper:

<partner name="SellerShipper">
<partnerLink name="Seller'/>

11 of 16 7/29/2007 2:19 PM

12 of 16

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

<partnerLink name-'""Shipper"/>
</partner>

5.3.6.4. Partner interactions

BPEL process flow contains the activities receive, reply, invoke, and pick, which implement the actual
interpartner communication . receive and pick represent links implemented by the process and called by partners
(e.g., the buyer). reply and invoke represent partner services called by this process (e.g., the seller, the server).

Table 5-4 describes the possible types of partner interactions . The pronoun my is used to distinguish a process from
its partners.

Table 5-4. Partner communication patterns

Pattern Partner roles Description

Async receive MyRole = receiveWS A partner calls my web service, which triggers logic in my process. The
partner resumes control immediately.

Sync MyRole = receive WS A partner calls my web service, which triggers logic in my process. My
receive-reply PartnerRole = reply process eventually sends back a response to the partner. The partner
WS blocks for the duration; to the partner, the entire interaction is a single
two-way web service invocation.
Async MyRole = receive WS A partner calls my web service, which triggers logic in my process; the
receive-invoke PartnerRole = invoke partner resumes control immediately. My process eventually calls the
WS partner's callback web service through an invoke.
Sync invoke PartnerRole = invoke My process calls the partner's web service with an invoke. The two-way
WS web service returns a result.
Async invoke PartnerRole = invoke My process calls the partner’'s web service with an invoke. The "one-way"
WS web service does not return a result.
Async MyRole = receive WS My process calls the partner's web service with an invoke. The web service
invoke-receive PartnerRole = invoke later calls back by triggering my receive.
WS

As Figure 5-7 shows, each interaction, considered from the perspective of the current process, has a corresponding
partner interaction. A partner async invoke is an async receive for my process, whereas a partner sync invoke is
a sync receive-reply for my process. A partner async invoke-receive is asymmetrically an async
receive-invoke for my process.

Figure 5-7. Partner interactions

7/29/2007 2:19 PM

13 of 16

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Partner

process My process

Invoke
async

ia) Partner invoke async,

Receive |
my async receive

Receive

Invake

(b) Partner invoke sync,
sync

my sync receive-reply

Reply

Invake

Receive
async

{c} Partner async invoke-
receive, my async receive-
invoke

Receive Invake

0 @ E
Og g oo

The four partner interaction activities are discussed in the following sections.
5.3.6.4.1. invoke

The invoke activity calls a partner web service either synchronously or asynchronously. The web service is identified
by partner link type and WSDL port type and operation. A synchronous web service requires both input and output
variables to be passed in; an asynchronous service requires only an input variable. In case the service generates a
fault, the invoke activity can define one or more fault handlers, and it can also specify a compensation handler.

The following example shows a call to a synchronous web service:

<invoke partnerLink="myPartner'" portType="service" operation="'syncRequest"
inputVariable="request" outputVariable="response'/>

5.3.6.4.2. receive

Whereas invoke lets a process call a partner's web service's operation, receive is a web service operation
implemented by the process for use by partners. The idea, as was discussed previously, is that partners trigger the
execution of a process by calling its services; for the process, the service is an event that set it in action.

Like invoke, receive uses partner link type and WSDL port type and operation to identify the service. The
arguments passed in by the caller are bound to a specified variable. The following code example implements the
initialRequest service, whose input is bound to the request variable. The createlnstance attribute indicates that
when this service is called, a new instance of the process is launched:

<receive partnerLink="myPartner" portType="service" operation="initialRequest"
variable="request" createlnstance="yes" />

The next example shows the secondRequest service, which does not create a new instance but listens for an event
in an existing instance:

<receive partnerLink="myPartner" portType="service" operation='"secondRequest"
variable="request" createlnstance="no" />

7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

5.3.6.4.3. reply

The reply activity sends back a response synchronously to an earlier receive. The effect is that of a single web
service call in which the receive accepts the input, and the reply passees back the output; the process can
perform arbitrary processing logic in between. As the following code sample shows, the reply matches the
partnerLink, portType, and operation attributes of the receive; the output is specified in the variable attribute

<reply partnerLink="client" portType="c:AccountOpenPT" operation="submitApplication"
variable=""request" />

<!-- do stuff in between -->

<reply partnerLink="client" portType="c:AccountOpenPT" operation="submitApplication"
variable="confirmationNumber " />

5.3.6.4.4. pick

pick waits for one of several events to occur, then executes the activity associated with that event. Like receive,
pick has a createlnstance attribute that determines whether to start a new process instance when the event
occurs. pick also has an optional timer (onAlarm) that executes a specified activity if none of the specified events
occurs within a given duration or until a given deadline. The list of candidate events is a set of onMessage elements;
the event is defined as a web service operation for a given port type and partner link, similar to the receive event
definition earlier.

In the following example, the pick triggers a new process instance when it gets events evl or ev2. In each case, it
executes some sequence of activities. The onAlarm condition fires if neither event occurs in 3 days and 10 hours.
(The XPath 1.0 syntax is P3DT10H.)

<pick createlnstance="yes">
<onMessage partnerLink="pl" portType='"pt" operation="evl"
variable="v">
<sequence>. . .</sequence>
</onMessage>

<onMessage partnerLink="pl" portType="pt" operation="ev2"
variable="v">

<sequence>. . .</sequence>
</onMessage>
<onAlarm for="P3DT10H">
<sequence> . . . </sequence>
</onAlaram>
</pick>

5.3.6.5. Properties

A standard WSDL extension allows for the definition of message properties, which can be thought of as macros to
access parts of WSDL messages. The definition of a message property has two parts: a property, which has a name
and a WSDL message or XML schema type; and a property alias, which stipulates from which WSDL message
and part the property comes. The property alias includes an XPath expression that extracts data to be represented
by the property from the WSDL message. In the following code example, the property nameProp represents the
name of a person message type:

<property name="'nameProp" type=''xsd:string'/>
<propertyAlias propertyName="nameProp" messageType="person' part="name"
query="/personalData/name'/>

5.3.6.6. Correlation

The main use of properties in BPEL is message correlation , a large topic in its own right, as will be apparent shortly.
The definition of a process can specify any number of correlation sets , each of which has a name and a list of
message properties . In the following code sample, the correlation set USPersonCorrSet includes properties
nameProp and SSNProp:

<correlationSets>

<correlationSet name="USPersonCorrSet" properties=""nameProp SSNProp'/>
</correlationSets>

14 of 16 7/29/2007 2:19 PM

15 of 16

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

The purpose of the correlation set is to tie together a partner conversation. A fundamental principal of BPEL is that
instances of partner processes communicate with each other simply by calling each other's web services, passing
application data whose structure is transparent to the BPEL engine. In BPEL, partners do not address each other by
ID, but rather pass around messages containing key fields that can be correlated for the lifetime of the exchange.

The protocol governing a correlation set, from the perspective of one of the participating processes, is as follows:

e The first step in the conversation is the initiating step. This step is normally a receive or an invoke. The
correlation set is populated with values based on the initiating message. In the case of a receive, the values
come from the inbound message. For an invoke, the values are those sent to the partner, those received
back (if the invocation is synchronous), or both.

e Each subsequent step matches the data in the set with the initialized data. A receive is triggered only if the
data in the message matches the correlation set. An invoke or reply must send out data that agrees with
the data in the set.

The following example illustrates the protocol. Assuming that the conversation in question is the opening of an
account, the first step is a receive that, as the code shows, initiates the USPersonCorrSet set with contents of the
variable request. The attribute initiate is set to Yes, indicating that this step is the first in the conversation. The
createlnstance attribute is also set to Yes, indicating that this step is the first in the process. If it is set to No, this
activity can still begin a conversation because a process can have multiple conversations; of course, a fundamental
rule of BPEL is that every process begins with the initiation of a new conversation.

variable="request" createlnstance="Yes">
<correlations>
<correlation set="USPersonCorrSet" initiate="Yes"/>
</correlations>
</receive>

The conversation is continued with the following asynchronous invoke. The initiate attribute is set to No. BPEL
requires that the data sent match the correlation set of the previous set.

<invoke partnerLink="1" portType="pt" operation="approveAccount"
inputVariable="request" >
<correlations>
<correlation set="USPersonCorrSet" initiate="No" pattern="out"/>
</correlations>
</invoke>

The final step in the conversation is a receive that retrieves the asynchronous response to the previous invoke.
BPEL triggers this activity only if the data in the message matches the correlation set.

<receive partnerLink="1" portType="pt" operation="accountApproval"
variable="accountApproval" >
<correlations>
<correlation set="USPersonCorrSet" initiate="No"/>
</correlations>
</receive>

Based on this information, it is clear that any implementation of a BPEL engine requires a router component that,
upon receipt of a message from a web service invocation, triggers the process instance that correlates the message.
The engine is depicted in Figure 5-8. Different name/SSN combinations are routed to different process instances;
process A, not yet initiated, is started by the message with name=Pete and SSN=112; subsequent messages
matching those criteria are routed to process A.

Figure 5-8. BPEL correlation routing

Mew, name=Pete, 55N=112
| = Process A

MName=Jog, S5N=312

My > Process B
oy

BPEL
engine router Name=Mary, 35N=131

- Process C

afeg

7/29/2007 2:19 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

5.3.7. Transactions

Several factors make transactions hard to manage in a business process. First, a process that is long-running cannot
run in a single ACID transaction; instead, it must necessarily divide its function into a number of smaller
transactions. Second, the specification of standards for distributing transactions across multiple partner web services
and processes is a work in progress. BPEL 1.1 anticipates, but does not support, distributed transaction coordination
protocols such as WS-Transaction. Consequently, if a partner invokes a BPEL process, or a BPEL process invokes a
partner, the BPEL process cannot, using a standard protocol, work together with the partner in the event of an error
to reverse the effects of the interaction. The best that can be achieved is for the partners to agree on particular
cancellation operations.

BPEL's strategy for the first problem is compensation (described earlier in the section "Exception Handling and
Compensation"), which provides a structured and application-directed way to reverse the effects of the smaller
activities that have already completed. This happens strictly locally; the second problem remains an open issue. The
BPEL specification uses the term Long Running Transaction (LRT) to refer to the use of a hierarchical nesting of
scoped compensation handlers to unwind previously committed work in a controlled fashion. An LRT is not a specific
language feature but rather a way to describe the use of compensation to undo work performed over potentially a
long period of time.

BPEL developers beware: the LRT strategy helps guide the effort, but the actual design and coding of compensation
logic is still a difficult chore. The hard work is application-specific!

5.3.8. Extensions

Core BPEL is extended by adding attributes or elements, qualified by hamespace, to BPEL elements that support
extensibility. An important new BPEL extension, called BPELJ, is discussed in the next section.

16 of 16 7/29/2007 2:19 PM

1of5

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates

the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is

strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.4. BPELJ

"Pure" BPEL, examined previously, emphasizes "programming in the large,” or the activity of defining the big steps

of a process in a clean XML form. But a process that is

BPEL WISH LIST

As comprehensive as BPEL is, it can still be improved. The following standard enhancements would
make BPEL more powerful and easier to code:

foreach

Include an activity that can iterate over a data set. (An example of iterating over a
repeating XML element using a while loop and XPath is presented in the section
"Implementing foreach." earlier in this chapter.)

XML creation and update

Enhance the assign activity to support the construction of XML elements or documents.
For example, build a reply message using data from a request message.

Lightweight subprocesses or macros

Provide a mechanism to factor out a chunk of code into a modular piece, and provide the
ability to call that piece with parameters in a lightweight fashion.

More sophisticated correlation

In addition to basic correlation set matching, allow a message listener activity (receive,
pick, eventHandler) to filter on an arbitrary Boolean condition written in XPath or
XQuery. In the example at the beginning of this chapter, the kill claim event handler
triggers only if the kill message has the same claim ID as the original claim request.
Supporting more complex queries would be desirable; for example, allowing the kill only if
the claim amount is less than $1,000; the claim has been active for less than two business
days; and the claim is not currently in escalation, activation, or rejection states.

Business calendars

Provide a standard way to reference business calendars in the calculation of timeout
conditions in wait and onAlarm activities (e.g., have the process wait five business days
for a particular event to occur).

meant to actually run and be useful invariably has countless little steps, which are better implemented as lines of
code than as activities in a process. Functions such as processing input, building output, interfacing with in-house

7/29/2007 2:21 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

systems, making decisions, and calculating dates either drive or are driven by the process but are often too complex
to encode as part of the process flow.

"Programming in the small" is essential to the development of real-world processes, but is hard to accomplish with
pure BPEL. The best pure BPEL can offer is web services: if a piece of logic is hard, develop it as a web service and
call it from the process with an invoke activity. This approach works, but it is grossly inappropriate. First, the reason
for BPEL's emphasis on web services is the goal of communicating processes; partners calls each other as services,
but must a partner call pieces of itself as services? Second, the performance overhead of calling a service is
obviously a showstopper; the process needs fast local access to the small logic components, as if they were an
extension of the BPEL machine.

With these factors in mind, IBM and BEA have written a white paper that presents a standard Java extension of
BPEL called BPEL for Java (BPELJ).[5] A BPELJ process, depicted in Figure 5-9, has chunks of embedded Java code,
as well as invocations of separate plain old Java objects (POJOs) , Enterprise Java Beans (EJBs), or other Java
components. Though it still interfaces with its partner process through web services, the process internally leverages
Java to perform much of the hard work.

[5] M. Blow, Y. Goland, M. Kloppman, F. Leymann, G. Phau, D. Roller, M. Rowley, "BPELj: BPEL for Java,"
http://www-106.ibm.com/developerworks/webservices/library/wl-bpelj, March 2004.

Figure 5-9. The "J" in BPELJ

Process

W5

W5 Process

[PRIIP

BPELJ is an obvious technology choice for companies that intend to deploy their processes on J2EE platforms such as
BEA Weblogic and IBM WebSphere; the platform is already Java-enabled, so it is best to use Java capabilities in the
construction of the process. Luckily, BEA and IBM are building to BPELJ.

NOTE

Current BPELJ vendor implementations are difficult to find. Two BPEL toolkits—the Oracle BPEL Process
Manager 2.2 and IBM's WebSphere Application Developer Integration Edition 5.1.1—have Java extensions
(Oracle's is used in an example in Chapter 10), but they are proprietary. BEA is planning to develop a
reference implementation of BPELJ and possibly release it as Open Source. Expect major Java application
server vendors like BEA, IBM, and Oracle to be the earliest adopters and to evolve the language.

2 of 5 7/29/2007 2:21 PM

30f5

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

5.4.1. A Glimpse of BPELJ

Example 5-3 demonstrates some of the core features of BPELJ. The bold italicized parts are BPELJ-specific.

Example 5-3. BPELJ insurance automated claim

©CoO~NOUITAWNE

<!- - Process attributes:
- expressionLanguage is Java by default. Can be overriden to,
say, XPath at the element level
- Java code embedded in process goes in to the Java package "com.mike.claim"
- The BPELJ namespace is referenced below.
<process name="InsuranceClaim"
suppressJoinFailure="yes"
expressionLanguage="http://jcp.org/java"
bpelj :package="com.mike.claim"
targetNamespace=""http://mike.com/claim”
xmIns:tns="mike.com/claim”
xmIns="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmiIns:bpel j="http://schemas.xmlsoap.org/ws/2003/03/business-process/java'>

<I-- Three partner links: one a web service client interface, the others
Java internal stuff -->
<partnerLinks>
<partnerLink name="client" partnerLinkType="tns:Claim"
myRole=""ClaimProvider'/>
<partnerLink name="claimProcessor"
partnerLinkType="bpelj:com.mike.claim.ClaimProcessorEJB">
<partnerLink name="jmsPublisher"
partnerLinkType="bpelj:javax.jms.TopicPublisher">
</partnerLinks>

<I-- Two variables, one an XML, the other Java -->
<variables>
<variable name="input" messageType="tns:ClaimsMessage"/>
<variable name="jmsMessage' messageType="bpel]j:javax.jms.TextMessage"/>
<variable name="claimOK" messageType="bpelj:java.lang.Boolean "/>
</variables>

<sequence name="main’''>
<I-- process starts by receiving a claim through the client web service -->
<receive name='"receiveClaim" partnerLink="client" portType="tns:Claim"
operation="initiate" createlnstance="yes">
<output part="input" variable="input/>
</receive>

<I-- now invoke the Java claims processor as a partner link! -->

<invoke name="processClaim” partnerLink="claimProcessor" operation="execute'>
<input part="input" variable="input"/>
<output variable="claimOK"/>

</invoke>

<I-- if claim is ok, publish the original input on a JMS topic -->
<switch name="publfOK">
<case>
<condition>claimOK</condition>
<bpelj:snippet name='"createJMSMessage'>
<I-- Use partner link topic publisher to allocate a JMS message
and populate it with the claim input message.
Note "p_jmsPublisher”™ is the way to reference the partner
link "jmsPublisher™ in BPELJ -->
<bpelj :code>
JmsMessage=p_jmsPublisher_getSession().createTextMessage(input);
</bpelj:code>
</bpelj:snippet>
<invoke name="PubClaim" partnerLink="jmsPublisher"™ operation="publish"
<input part="message" variable="jmsMessage'/>
</invoke>
</case>
<otherwise>
<empty/> <!-- do nothing in this case -->
</otherwise>
</switch>

</sequence>
</process>

7/29/2007 2:21 PM

4 of 5

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

The process receives a claim by a web service request from a client application, then processes it using an EJB, and
finally, if the claim was successful, publishes the request to a JMS topic for consumption by interested subscribers.
The process extends core BPEL by defining partner links for Java components (lines 16-19), declaring Java variables
(lines 25-26), using the invoke activity to call Java components (lines 37-40 and 51-53), using Java expressions to
make decisions that affect flow (line 45), and embedding a snippet of Java code (lines 46-50). BPELJ features not
included in this example include Java correlation, Java exception handling, and XML-Java binding.

Some of these changes are not supported by BPEL 1.1! The Java snippet in lines 46-50,
for example, is illegal because BPEL does not support the addition of new activity types.
Similarly, the input and output elements (lines 38-39) are not permitted in invoke and
receive activities, and the condition (line 45) in the switch activity should be an
attribute rather than a child element of case. In their joint whitepaper, BEA and IBM
admit these incompatibilities and even suggest alternative approaches that are supported.
For example, the snippet could be overloaded in the empty activity. The alternatives are
onerous and unintuitive, which explains why the authors chose to cheat. BPELJ won't be
ready for prime time until these issues are resolved.

0]

5.4.2. BPELJ Source Code

The source code of a pure BPEL process is a set of XML files containing WSDL and BPEL process definitions. BPELJ
source code can be either XML files with embedded Java code or Java source files annotated with XML. The former
approach is the one adopted in the examples above; likewise, most of the samples in the BPELJ specification are
XML with embedded Java.

The latter approach, documented in the BPELJ specification as a viable alternative, makes sense only if the number
of lines of Java code is close to the number of lines of XML. Example 5-4 shows a Java source file
(MyProcessIimpl.java) containing a comment in lines 1-15 that defines the BPEL process XML. The source file
implements the class MyProcessiImpl; the source code begins on line 16. Lines 17-20 implement a method that is
called in the process on line 10.

Example 5-4. BPELJ sample

1 /**

2 * @bpelj:process process::

3 * <process name="'‘MyProcess"'>

4 * <variables>

5 * <variable name="Xx" type="bpelj:Integer'/>
6 * </variables>

7 * - .-

8 * <bpelj:snippet>

9 * <bpelj:code>

10 * x = self._getRandomValue ();

11 * </bpelj:code>

12 * </bpelj:snippet>

13 * L.

14 * </process>

15 **/

16 public class MyProcessimpl implements Serializable
17

18 Integer getRandomValue()

19

20 return new Integer(myRand.nextint());
21 }

22 }

A well-designed BPELJ process should be mostly pure BPEL with a smattering of Java. (Analogously, a well-designed
Java Server Page is mostly markup with minimal embedded Java.) Significant Java processing can be factored out to
special Java partner link types, whose source code resides in traditional Java source files, separate from the process.
Consequently, XML-driven BPELJ is preferable to Java-driven BPELJ.

NOTE

BPELJ is conceptually similar to Process Definition for Java (PD4J),[5] a specification proposed by BEA to the

7/29/2007 2:21 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Java Community Process (JSR 207) for mixing XML and Java for process definition. PD4J is the design model
for BEA's WebLogic Integration 8.1. BEA, along with IBM, authored BPELJ (also submitted to JSR 207), and
is building to it for its Version 9 release of WebLogic Integration. PD4J favors the Java-with-annotated-XML
approach, so perhaps WebLogic Integration 9 will adopt annotated Java as its development model.

[5] JSR 207, http://www.jcp.org/en/jsr/detail?id=207.

5.4.3. Other Language Implementations
BPELJ is the first language extension of BPEL, extending BPEL's capabilities on Java platforms. The same approach is

suitable for other programming languages, notably those that figure prominently into Microsoft's .NET platform,
such as C#. Expect to see such implementations soon, as BPEL increases in popularity.

50f 5 7/29/2007 2:21 PM

1of2

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.5. BPEL and Patterns

BPEL fares exceptionally well in its support for support for P4 patterns. As rated by P4 members in its paper,[5] BPEL
directly supports 13 of the 20 patterns, and it indirectly supports another one. The results of the paper are captured
in Table 5-5.

[5] P. Wohed, W. van der Aalst, M. Dumas, A. H. M. ter Hofstede, "Pattern Based Analysis of BPELAWS," FIT Technical Report,
FIT-TR-2002-04.

Table 5-5. BPEL support for the P4 patterns

Pattern Compliance Approach Notes
(+ +-)

Sequence + sequence activity

Parallel Split + Flow activity

Synchronization + Flow activity followed by another activity, which will not execute

until all parallel paths in the flow have completed.

Exclusive Choice + switch activity.

Simple Merge + switch activity followed by another activity, which will not

execute until the one activity selected in the switch has
completed.

Multi-Choice + flow with conditional links to the activities to be chosen. See P4
paper,
p.8f.

Sync Merge + Use dead path elimination to join the results of the multiple

choice.

Multi Merge - No.

Discriminator - No. See P4
paper,
p.9.

Arbitrary cycles - Only structured loops are allowed. No goto-like constructs.

Implicit Termination + rlow with a link out.

Multiple Instances + invoke in a while loop.

(MI) Without

Synchronization

MI With Design Time + Run each instance as a separate activity in a flow activity.

Knowledge

MI With Runtime - Onerous. See P4

Knowledge paper, p.
11.

MI Without Runtime -

Knowledge

Deferred Choice + pick activity

7/29/2007 2:22 PM

2 of 2

Pattern

Interleaved Parallel

Routing

Milestone

Cancel Activity

Cancel Case

Compliance
(+1 +-, _)

+-

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

Approach

Multiple scopes within a flow that compete for a single shared
variable whose access is serialized
(variableAccessSerializable is set to yes). The order of the
scopes is arbitrary but serial.

Poll for milestone in a while loop.

Fault out of the activity to be cancelled.

terminate activity

Notes

See P4

paper, p.
12f.

See P4
paper,
p.14.

7/29/2007 2:22 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.6. Summary

The main points of this chapter include the following:

e BPEL is an XML-based process definition language. The XML approach has several merits, including
programmability, executability, exportability, and easy web services integration capabilities.

e BPEL was originally written by IBM, Microsoft, and BEA, but has been handed over to OASIS for
standardization. BPEL is based on IBM's WSFL and Microsoft's XLANG.

e The source code for a BPEL process is a set of WSDL files and a BPEL XML file. WSDL is the standard web
service definition format, specifying port types, partner link types, message types, and properties. The
process definition references the WSDL, creating partner links based on WSDL partner link types and
variables based on WSDL-defined message types. Compensation, fault and event handlers can be defined for
the process or any of its scope levels. The flow of a BPEL process includes service touchpoints (receive,
invoke, reply) and control flow elements (wait, while, switch, flow, sequence, scope).

e BPELJ introduces Java extensions to "pure" BPEL, such as the ability to define Java process variable, evaluate
dates and conditions with Java code, and embed code snippets. Other powerful features include Java partner
links (enabling invoke calls to local Java classes in addition to pure BPEL's partner web services) and
correlation based on Java classes.

e BPELJ source code can be XML with embedded Java or Java with annotated XML. The former approach is
arguably better from a design perspective. The latter approach is influenced by BEA's PD4J model, used in
WebLogic Integration 8.

e BPEL has built-in or easily attainable support for 14 of the 20 P4 patterns.

lofl 7/29/2007 2:22 PM

http://acmsel.safaribooksonline.com/print?xmlid=0596008430/essential...

User name:
Book: Essential Business Process Modeling

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.7. References
1. S. Dietzen, "Standards for Service-Oriented Architecture,"” Weblogic Pro. May/June 2004.

2. C. McDonald, "Orchestration, Choreography, and Collaboration,"
http://lists.w3.org/Archives/Public/www-archive/2003May/0009.html

3. S. White, "Business Process Modeling Notation," Version 1.0.
http://www.bpmn.org/Documents/Introduction%20t0%20BPMN.pdf, May 2004.

lofl 7/29/2007 2:24 PM

	5 Business Process Execution Language (BPEL)
	5.1. Anatomy of a Process
	5.2. BPEL Example
	5.3. BPEL in a Nutshell
	5.4. BPELJ
	5.5. BPEL and Patterns
	5.6. Summary
	5.7. References

