
:

1 of 2 6/2/2007 11:03 AM

User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.8. Error Handling

With everything that can go wrong in a database application, the correct handling of errors is a topic large enough
for its own chapter (or book!). We're lucky that the APIs covered in this book, built on the modern Java language
and on the .NET framework, contain error handling mechanisms that make recovering from errors easy.

5.8.1. Error Handling in ADO.NET

ADO.NET's error handling model is based on .NET exceptions. Functions or methods that can fail because of an error
must be wrapped in a try/catch/finally block. The difficult part of handling exceptions is determining what to do
when an error occurs and freeing resources for objects that were created. The following code example shows the
error handling pattern that can be successfully used with ADO.NET to clean up all resources in the event of an error:

{Odbc|OleDb|Sql}Connection connection = null;
{Odbc|OleDb|Sql}Command statement = null;
{Odbc|OleDb|Sql}DataReader resultSet = null;
try {
 // Create and use the Connection, Command, and DataReader objects
 connection = new SqlConnection(connection_string);
 connection.Open();

 statement = connection.CreateCommand();
 statement.CommandText = SQL;

 resultSet = statement.ExecuteReader();

} catch(Exception e) {
 // Notify user that an error occurred
} finally {
 if(resultSet != null) resultSet.Close();
 if(statement != null) statement.Dispose();
 if(connection != null) connection.Close();
}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be
caught and the code in the catch block will be executed. The finally block, which will be executed regardless of
whether an exception is thrown, should be responsible for freeing the resources. Which resources to free is difficult
to determine if you don't know the point of failure. For example, if the failure occurs when executing a SQL
statement, then the only resources that need to be freed are the statement and connection objects. In the code
fragment above, an exception thrown in the ExecuteReader method would prevent the resultSet object from being
closed, since it would still be set to its initial value of null.

It is good programming practice to free resources in the opposite order in which they
were allocated.

5.8.2. Error Handling in JDBC

JDBC's error handling model is based on Java exceptions; therefore, the standard try/catch/finally error handling
paradigm of Java can be applied to JDBC applications. The following Java code fragment is an example of how to use
a try/catch/finally code block to gracefully handle application exceptions and free allocated resources:

Connection connection = null;
Statement statement = null;
ResultSet resultSet = null;

:

2 of 2 6/2/2007 11:03 AM

try {
 // Create and use the Connection, Statement, and ResultSet objects
 connection = DriverManager.getConnection(connection_string);
 statement = connection.createStatement();
 resultSet = statement.executeQuery(SQL);

} catch(Exception e) {
 // Then, notify the user of an error.
} finally {
 if(resultSet != null)
 try{resultSet.close();} catch(Exception e) {}
 if(statement != null)
 try{statement.close();} catch(Exception e) {}
 if(connection != null)
 try{connection.close();} catch(Exception e) {}
}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be
caught and the code in the catch block will be executed. The finally block, which will be executed regardless of
whether an exception is thrown, should be responsible for freeing the resources held by the connection, result
set, and statement objects. Note that each object is first tested for a null value before freeing the resources held
by the object. This NULL test is to make the code applicable to all error conditions — the code functions if the
exception occurs while opening the connection as well as processing the result set data. The close methods on
the JDBC objects can also generate exceptions when freeing resources, so they must be wrapped in their own
try/catch blocks. This makes coding awkward, but even so, it will be relatively simple if you follow the pattern
given here.

It is good programming practice to free resources in the opposite order from what they
were allocated.

