User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.6. Retrieving Data

A typical database program retrieves data from a database server and processes it. These programs will execute
SELECT statements following a process similar to that described in the previous section. The difference between
executing a SELECT statement as opposed to a statement that does not return results is that with SELECT you must
execute additional code to process the results returned by SELECT.

5.6.1. Retrieving Data Using ADO.NET

The following C# code fragment executes a SQL SELECT statement that returns author names from the authors
table and then iterates through the results one row at a time, printing out each author's name. The code is
explained in the detailed steps that follow:

{0dbc|OleDb|Sgl}Command statement = connection.CreateCommand();
statement.CommandText = "SELECT au_fname, au_lname FROM authors';
{Odbc|OleDb|Sqgl}DataReader resultSet = statement.ExecuteReader();
while(resultSet.Read())
{
String fname = "NULL";
String Iname = "NULL";
if(TresultSet.IsDBNull(0)) fname = resultSet.GetString(0);
if('resultSet.IsDBNull(1)) Iname = resultSet.GetString(1);
System.Console.WriteLine(Iname + ", " + fname);

H
resultSet.Close();
statement.Close();

'-'@ Column ordinals are all zero-based (the first column is O, the second is 1, etc.) in
L—— ADO.NET, which is different from the one-based ordinals used by JDBC.

To execute a SQL query and process the results using ADO.NET, take the following steps:

1. Create the Command object that will be used to execute the SELECT statement and attach a SELECT
statement to it:

{0dbc|OleDb]Sqgl}Command statement = connection.CreateCommand();
statement.CommandText = "SELECT au_fname, au_lname FROM AUTHORS";

2. Invoke the ExecuteReader method on the Command object, creating a new DataReader object.

{Odbc|OleDb|Sql}DataReader resultSet = statement.ExecuteReader();

3. Iterate through each row in the result set. After execution of the SELECT statement, retrieve rows using
the DataReader's Read method. If you expect a multiple row result, you should invoke the Read method
from within a while loop:

while(resultSet.Read())
{

1of6 6/2/2007 10:57 AM

4. Having fetched a row of data into the DataReader object, the column data can be extracted using the
DataReader's Get methods. Before calling the Get methods, we check to see if the data is NULL using
the DataReader's 1sDBNull method. If the value returned by the I1sDBNull method is true, then the
value of the string will be NULL. There are many Get methods for each type of column. Using the
appropriate datatype for the column is important, because a conversion is not always possible. For a list
of available Get methods and the ANSI SQL types they should be used with, please see Table 5-4.

String fname = "NULL"™;
String Iname = "NULL";
if('resultSet. IsDBNull)) fname

(o resultSet.GetString(0)
iT('resultSet._IsDBNull(1)) Iname

resultSet._GetString(1)

When creating an ADO.NET program that fetches data that can contain NULL values, it is always safest
to check the return value of the DataReader object's 1sDBNull method prior to extracting a value.

5. The Read method of DataReader returns false when all the data has been read from the database
server. At that point, the Close methods on the Command object and DataReader should be invoked to
free up the resources used internally to process the statement.

resultSet.Close();
statement.Close();

2 of 6 6/2/2007 10:57 AM

30f6

Table 5-4. ADO.NET DataReader Get methods

Method name

Description

GetBoolean(int i)

Returns the value from the ith column as a Boolean value, where i is the
zero-based column number.

GetByte(int i)

Returns the value from the ith column as a single-byte value, where i is the
zero-based column number. No conversion will be done if the data in the
column exceeds one byte and an Inval idCastException object will be thrown.

GetBytes(int i, long
datalndex, byte[] buffer, int
bufferindex, int length)

Returns the value from the ith column as a binary value, where i is the
zero-based column number, datalndex is the offset in the column value to start
reading, buffer is the byte array to copy the data into, bufferlilndex is the
offset into buffer at which to start copying data, and length is the maximum
length to copy into buffer.

GetChar(int i)

Returns a single char value from the ith column. For use with character type
columns, where i is the zero-based column number.

GetChars(int i, long
datalndex, char[] buffer, int
bufferindex, int length)

Returns a string of characters from the ith column. For use with character type
columns, where i is the zero-based column number, datalndex is the offset in
the column value to start reading, buffer is the char array to copy the data
into, bufferindex is the offset into buffer at which to start copying data, and
length is the maximum length to copy into buffer.

GetDataTypeName(int i)

Gets a String value that contains the name of the column's datatype, where i
is the zero-based column number.

GetDateTime(int i)

Returns a DateTime value from the ith column. For use with temporal type
columns, where 1 is the zero-based column number.

GetDecimal (int i)

Returns a single Decimal value from the ith column. For use with numeric type
columns, where 1 is the zero-based column number.

GetDouble(int i)

Returns a single double value from the ith column. For use with double
precision type columns, where i is the zero-based column number.

GetFloat(int i)

Returns a single float value from the ith column. For use with floating-point
columns, where i is the zero-based column number.

GetInt{16,32,64}(int i)

Retrieves data from integer columns. The precision of the return value is
encoded within the function names. Use GetlIntl6 for a 16-bit signed short
integer, GetInt32 for a 32-bit signed int, and GetInt64 for a 64-bit signed
long.

GetName(int i)

Returns a String value containing the name of the ith column, where i is the
zero-based column number.

GetOrdinal (string name)

Returns an int value containing the ordinal value of the column with name
matching the name argument.

GetString(int i)

Returns a single String value from the ith column. For use with character type
columns, where 1 is the zero-based column number.

Beyond the Get methods, there are three other methods on the DataReader type that are frequently used when
processing data from a query. Those three methods are listed in Table 5-5.

Table 5-5. Frequently used ADO.NET DataReader methods

Method name |Description

Close() Closes the DataReader object, freeing up resources held by the instance.

IsDBNull(int | Returns true if the specified column is NULL, otherwise it returns false, where i is the zero-based
i) column number.

Read() Fetch the next row if one is available, and return true, otherwise return false.

6/2/2007 10:57 AM

5.6.2. Retrieving Data Using JDBC

The following Java code fragment executes a SQL SELECT statement that returns author names from the authors
table and then iterates through the results one row at a time, printing out each author's name:

Java.sql .Statement statement = connection.createStatement();
jJava.sql _ResultSet result =

statement.executeQuery("'SELECT au_fname, au_lname FROM authors");
while(result.next()) {

String fname = result.getString(1);

if(result.wasNull()) fname = "NULL";

String Iname = result.getString(2);

if(result.wasNull()) Iname = "NULL";

System.out._printin(Iname + ", " + fname);

result.close();
statement.close();

H@ Column ordinals are all one-based (first column is 1, second is 2, etc.) in JDBC, which is
— different from the zero-based ordinals used by ADO.NET.

5.6.2.1. Use the following steps to execute query statements in JDBC:

1. Create a JDBC Statement object by invoking the createStatement method on a valid Connection
object:

Java.sql .Statement statement = connection.createStatement();

2. The query is executed by invoking one of the execute methods on the Statement object. Result sets
from query statements are processed by JDBC ResultSet objects, which are returned from the
executeQuery method of JDBC Statement objects.

jJava.sql .ResultSet result =
statement.executeQuery("'SELECT au_fname, au_lname FROM authors"™);

3. After creating a ResultSet object, you can iterate through one row at a time by invoking the next
method. The next method returns a Boolean value, true for each row in a result set and false after all
rows have been iterated through. It is common to invoke the next method within a while loop to
process the rows one-by-one. The ResultSet does not begin on the first row of the result, so you must
invoke the next method to advance to the first row before calling any of the get methods.

while(result.next()) {

4. To retrieve column data from the rows within a result set, invoke the appropriate get method on the
ResultSet object. For a list of the most common get methods, check Table 5-6. Note that the column
data is checked for a NULL value after the get method has been invoked, since the nullness of a value
can't be determined from the value returned by the get methods.

String fname = result.getString('au_fname™);
if(result.wasNull()) fname = "NULL";
String Iname = result.getString("'au_lname');
iT(result.wasNull()) Iname = "NULL";

When creating a JDBC program that fetches data from nullable columns, it is always safest to check the
value returned from a ResultSet object for a NULL value using the wasNull method.

4 of 6 6/2/2007 10:57 AM

5of 6

L.

The JDBC get methods that return object types will return Java NULL values when
W . returning database NULL values. However, this does not apply to non-object types
! such as getlInt(), which returns zero in the case of a database NULL. For this

reason, this chapter uses the verbose wasNul I () method to test the value for a

NULL.

5. Free the resources held by the result set and statement objects. When finished with the ResultSet and
Statement objects, invoke their close methods so that database resources can be freed.

result.close();
statement.close();

Table 5-6. JDBC ResultSet get methods

Method name

Description

getBlob({int i|String
name})

Retrieves a Blob value from BLOB type columns, where i is the one-based column
ordinal and name is the name of the column.

getBoolean({int i|String
name})

Retrieves a boolean value from BOOLEAN type columns, where i is the one-based
column ordinal and name is the name of the column.

getByte({int i|String
name})

Retrieves a byte value from CHARACTER or BINARY type columns, where i is the
one-based column ordinal and name is the name of the column.

getBytes({int i|String
name})

Retrieves a byte[] value from BINARY type columns, where i is the one-based
column ordinal and name is the name of the column.

getClob({int i|String
name})

Retrieves a Clob value from CLOB type columns, where i is the one-based column
ordinal and name is the name of the column.

getDate({int i|String
name})

Retrieves a Date value from TEMPORAL type columns, where 1 is the one-based
column ordinal and name is the name of the column.

getDouble({int i|String
name})

Retrieves a double value from DOUBLE PRECISION type columns, where i is the
one-based column ordinal and name is the name of the column.

getFloat({int i|String
name})

Retrieves a float value from REAL type columns, where i is the one-based column
ordinal and name is the name of the column.

getint({int i1|String
name})

Retrieves an int value from INTEGER type columns, where i is the one-based
column ordinal and name is the name of the column.

getLong({int i|String
name})

Retrieves a long value from INTEGER type columns, where 1 is the one-based
column ordinal and name is the name of the column.

getRow()

Returns the current row number.

getShort({int i|String
name})

Retrieves a short value from INTEGER type columns, where i is the one-based
column ordinal and name is the name of the column.

getString({int i|String
name})

Retrieves a String value from CHARACTER type columns, where i is the one-based
column ordinal and name is the name of the column.

getTime{int i]String
name})

Retrieves a Time value from TEMPORAL type columns, where i is the one-based
column ordinal and name is the name of the column.

getTimestamp({int
i|String name})

Retrieves a Timestamp value from TEMPORAL type columns, where i is the
one-based column ordinal and name is the name of the column.

Beyond the get methods, there are three other methods on the ResultSet type that are frequently used when
processing data from a query. Those three methods are listed in Table 5-7.

6/2/2007 10:57 AM

Table 5-7. Frequently used JDBC ResultSet methods

Method Description

name

close() Closes the ResultSet object, freeing up resources held by the instance.

next() Advances the ResultSet object to the next available row and returns true. If no rows remain false

will be returned.

wasNull() |Returns true if the last column returned with a get method contained a database NULL value,
returns false otherwise.

6 of 6 6/2/2007 10:57 AM

