User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Chapter 5. Database Programming

While SQL plays an important role in standardizing the communication with different RDBMSs, a missing piece still
remains for those who want to write database software applications. The missing piece is the database programming
Application Programming Interface (API) used to transport SQL statements to and process their results from an
RDBMS. While all the database platforms discussed in this book provide their own proprietary interfaces for
database application developers, this chapter focuses on two commonly used APIs that provide a consistent
interface across database platforms. Specifically, this chapter introduces you to:

ADO.NET

ADO.NET is Microsoft's high-level database programming APl on the .NET platform. The ADO.NET API is
a collection of .NET interfaces that are accessible from any of the .NET languages. The primary benefits
of ADO.NET are ease of use, portability within the .NET platform, XML integration, and access to data
sources other than relational databases. The ADO.NET examples covered in this book are written in C#;
however, ADO.NET is also available from Visual Basic and the other .NET languages.

JDBC

JDBC, or Java Database Connectivity, was developed primarily by Sun Microsystems to be the primary
database programming API for the Java language. JDBC is the most popular database programming API
for the Java language and offers operating-system portability, reasonable performance for most
applications, and a well-documented interface. In addition, drivers for most database systems are
typically free. This chapter covers JDBC Version 3.0. For additional information, please browse
http://java.sun.com/jdbc.

As a quick desk reference, this chapter won't provide all the information needed to develop a large enterprise
database application. However, we give you enough to get started by covering components that are common to all
database applications, both large and small.

5.1. Database Programming Overview

Developing successful database applications, large and small, involves many steps. Careful thought must be given
to application architecture, and especially to the following issues:

e How to map application data, which is typically object-oriented, to a relational database
e How to handle errors gracefully
e How to maximize performance and scalability

A typical database application will require many different SQL statements. The management of so many statements
is simplified by the fact that all SQL statements will follow roughly the same pattern of execution within an
application. Figure 5-1 is a state diagram showing how SQL statements are prepared, executed, and then processed
by a database application when interacting with a relational database system. The state diagram has been broken
down into eleven steps, four of which are optional (and are indented in the diagram).

Figure 5-1. Statement execution state diagram

1of3 6/2/2007 10:49 AM



Establish connectivity
Begin ransaction |
Create statement abject

hssociate SOL with statement object 4———

‘Bind input parameters
Ewecute statement ohjet +—————

Process results

Re-ewecutel L]

| o

Annther 5L YES
statement!

End trarsaction |
Free resaurces

Following are detailed descriptions of each step shown in Figure 5-1:

1. Establish connectivity: Establishing connectivity is the first step in every successful database
application. It is in this step that the client, or database application, makes a physical connection to the
database that will be used to transmit the SQL statements to the database and the results back to the
client. The actual physical connection could be over a LAN, WAN, or even a simple logical connection
back to the client in cases where the database application and server are running on the same machine.
For more information on how to establish connectivity, please see the section Section 5.2 later in this
chapter.

2. Begin transaction (optional): A transaction may be begun so that the database changes may be rolled
back on failure or committed on success. For more information on transaction control from database
programming APls, please see Section 5.4 later in this chapter.

3. Create statement object: Most modern database programming APls are object-oriented and therefore
use an object to represent a SQL statement. There will typically be one statement object per SQL
statement executed within the application. The statement object holds the state information required to
execute the SQL statement, such as the SQL statement itself and input parameters when they exist.

4. Associate SQL with statement object: After the statement object has been created, it needs to have a
SQL statement assigned to it. Once this is done, the statement object may be executed.

5. Bind input parameters (optional): While not part of the ANSI SQL standard, the ability to bind
parameters to "placeholders"” within a SQL statement is supported by all the database platforms covered
in this book. If the SQL statement has placeholders for input parameters, the statement object will need
to have a program variable associated with each input parameter. If the SQL statement contains no
input parameters, then this step may be skipped. Input parameters are useful for optimizing
performance when the same SQL statement is re-executed many times, because the server-side parsing
of the statement only needs to be done once prior to the first execution. Another reason to use input
parameters is to embed binary data, such as BLOB data, into SQL statements such as INSERT and
UPDATE statements.

6. Execute statement object: After the statement object has been successfully created and initialized with

a SQL statement, the statement object can be executed. This step executes the SQL statement on the
database server.

2 of 3 6/2/2007 10:49 AM



30f3

7. Process Results (optional): After the database server returns a result set, the application may process
the results. This step is optional, since it is typically not required for statements that insert or update
data in the database.

8. Re-execution: If the same statement needs to be re-executed to retry on a failure or to execute again
with different values for the input parameters, the application can return to Step 6. If the application
has no need to re-execute the same statement, it moves on to Step 9.

9. Execute another SQL statement: If the application needs to execute a different SQL statement and can
reuse the statement object, then the application can return to Step 4; if not, it can move to Step 10.

10. End transaction (optional): Assuming a transaction was begun in step 2, the transaction is now either
committed or rolled back. If the transaction is rolled back, then all changes to the database made by the
statement object will be removed from the database.

11. Free resources: After successfully executing the statement and processing any results, the client- and
server-side resources need to be freed for use by other applications.

The remaining sections in this chapter provide examples of how to use the ADO.NET and JDBC database APIs to
build applications that follow the steps outlined in Figure 5-1.

6/2/2007 10:49 AM



