
:

1 of 4 6/2/2007 10:52 AM

User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for
reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates the fair use privilege under U.S.
copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is strictly prohibited. Violators will be prosecuted to the
full extent of U.S. Federal and Massachusetts laws.

5.2. Opening a Database Connection

Before interacting with a database, an application must first establish a connection to the database server. The APIs covered in
this book abstract the low-level connectivity details into a few simple object-oriented classes, making it easier to focus on the
database application instead of protocols and network topology.

5.2.1. Opening an ADO.NET Database Connection

Opening a connection with ADO.NET requires instantiating a connection object with a properly formatted connection string and
then invoking the Open method on the connection object. The connection object can be an OdbcConnection, SqlConnection, or an
OleDbConnection. The OdbcConnection is designed for any ODBC datasource, and the OleDbConnection type will work with any
OLE DB Provider. For the highest performance data access, use connection objects specifically tuned to the specific database
platform, such as SqlConnection for Microsoft SQL Server. Following is the syntax for creating a Connection object in ADO.NET:

{Odbc|OleDb|Sql}Connection connection =
 new {Odbc|OleDb|Sql}Connection(connection_string);
connection.Open();

The format of the connection string is the same for all of the connection types. The format is a string of key/value pairs delimited
by semicolons. For example:

key1=value1; key2=value2; key3=value3; ...

While the format is the same for every connection type, the keys and values are quite different. Tables Table 5-1 through Table
5-3 list the attributes for the three connection types listed above. Many database platforms support additional attributes that can
also be set through the connection string. For a list of these attributes, please consult the appropriate database vendor
documentation.

Following are examples of two connection strings for an OdbcConnection:

DSN=MyOracleDSN; UID=scott; PWD=tiger;
DRIVER={SQL Server};SERVER=(local);UID=sa;PWD=;DATABASE=pubs;

The first string connects to a Data Source Name, or DSN, with the name MyOracleDSN using the username scott and the
password tiger.

The second string connects using the SQL Server driver to a database named pubs on the local server. The username is sa. The
password is blank, indicating to the driver that the password is not required for the sa user.

Following is an example of a connection string for an OleDbConnection, which connects to an Oracle9i data source using the
MSDAORA OLE DB provider, the use name scott, and the password tiger.

Provider=MSDAORA;Data Source=Oracle9;User ID=scott;Password=tiger;

Finally, here is an example of a connection string for a SqlConnection, which connects to a SQL Server data source on the local
server:

Server=(local);UID=sa;PWD=;DATABASE=pubs;Connection Timeout=60;

In Tables Table 5-1 through Table 5-3, you'll find synonyms for some keywords. For example, you can use "DSN" and "Data
Source Name" interchangeably in your code.

:

2 of 4 6/2/2007 10:52 AM

Table 5-1. Connection string attributes for OdbcConnection

Keyword Notes

Data Source
Name

DSN

The DSN, FILEDSN, or DRIVER attribute must be provided to connect. The DSN is the Data Source Name known by
the client's driver manager. The advantage of using a DSN is that the DSN can be changed to point to a different
database platform while the database applications are still running.

User ID

UID

This value is set to the user identifier authorized to open a new connection.

Password

PWD

The password for the user. If the user doesn't have a password for the data source, then this property should still
be supplied with an empty value.

DSN_File
Name

FILEDSN

Similar to the DSN, the FILEDSN is a file, typically with a DSN extension that contains the attributes for the
connection object to establish connectivity. Even when using a FILEDSN, the connection may still need the
password provided, since passwords aren't stored within DSN files.

Driver Name

DRIVER

A Driver may be explicitly used instead of a DSN or FILEDSN. The drawback of using a driver directly is that the
application won't be isolated from changes made to the driver and will require slight modifications to target a
different database platform.

SAVEFILE When the SAVEFILE attribute is set to a legal filename, the connection attributes will be saved to the file once
successful connectivity is established. This option is only available when using DRIVER and FILEDSN connectivity
methods.

Table 5-2. Connection string attribute for OleDbConnection

Keyword Notes

Provider The name of the provider: this is the only required attribute. The specified provider may require additional attributes.

Table 5-3. Connection string attributes for SqlConnection

Keyword Notes

Application Name The name of the application that will be displayed from server management utilities.

AttachDBFilename

Extended properties

Initial File Name

The pathname to an attachable database.

Connect Timeout

Connection Timeout

Number of seconds to wait before the connection attempt is aborted. The default is 15 seconds.

Connection Lifetime Time in seconds the connection can remain in the connection pool, when pooling is enabled.

Connection Reset Specifies whether or not the connection is reset when it is reused from the connection pool. Default is true.

Current Language The language the connection session should use.

:

3 of 4 6/2/2007 10:52 AM

Keyword Notes

Data Source

Server

Address

Addr

Network Address

The SQL Server instance name or network add:ress.

Initial Catalog

Database

The name of the database.

Integrated Security

Trusted_Connection

Set to true or sspi for secure connections. The default is false.

Max Pool Size The maximum number of connections allowed in the connection pool at a time. The default is 100.

Min Pool Size The minimum number of connections to keep in the connection pool at a time. The default is 0.

Network Library

Net

The network library to use in establishing the connection. Valid settings are dbnmpntw for Named Pipes,
dbmsrpcn for Multiprotocol, dbmsadsn for AppleTalk, dbmsgnet for VIA, dbmsipcn for Shared Memory,
dbmsspxn for IPX/SPX, and dbmssocn for TCP/IP. The default is dbmssocn for TCP/IP.

Packet Size The network packet size in bytes; the default is 8,192.

Password

Pwd

The user's password.

Persist Security Info Determines if security-sensitive connection properties, such as the password, are stored within the
connection object after a connection has been attempted or completed. The default is false.

Pooling Determines if connection pooling should be used for the connection. The default is true.

User ID The user's login name.

Workstation ID The name of the computer connecting to the database.

5.2.2. Opening a JDBC Database Connection

Following is the syntax for registering a driver with the JDBC Driver Manager and then opening a database connection:

Class.forName(driver_name);
Connection connection = DriverManager.getConnection(connect_string,
 username, password);

The first step in establishing JDBC connectivity is to instruct the Java Virtual Machine (JVM) class loader to load the appropriate
JDBC driver.

The most common method of loading the driver into the class loader is to use the static forName method of the Class class. This
method can provide applications with greater flexibility in changing database platforms by having the Java Virtual Machine (JVM)
load the database driver at runtime:

Class.forName("driver_name");

After the database driver has been loaded, the application can establish connectivity by invoking the static getConnection method
on the JDBC DriverManager class. The getConnection method takes three arguments: a connection string, username, and
password:

Connection connection = DriverManager.getConnection(connect_string,
 username, password);

:

4 of 4 6/2/2007 10:52 AM

The connection string follows the following JDBC URL naming scheme:

jdbc:subprotocol:subname

Following are examples of how to connect to the different vendors covered in this book using JDBC.

5.2.2.1. DB2

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");
Connection connection = DriverManager.getConnection(
 "jdbc:db2:DATABASE", "user", "passwd");

5.2.2.2. MySQL

Class.forName("org.gjt.mm.mysql.Driver");
Connection connection = DriverManager.getConnection(
 "jdbc:mysql://127.0.0.1:3306/DATABASE",
 "user", "passwd");

5.2.2.3. PostgreSQL

Class.forName("org.postgresql.Driver");
Connection connection = DriverManager.getConnection(
 "jdbc:postgresql://127.0.0.1:5432/DATABASE",
 "user", "passwd");

5.2.2.4. Oracle

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection connection = DriverManager.getConnection(
 "jdbc:oracle:thin:@myserver",
 "scott","tiger");

5.2.2.5. SQL Server

Class.forName(
 "com.microsoft.jdbc.sqlserver.SQLServerDriver"
);
Connection connection = DriverManager.getConnection(
 "jdbc:microsoft:sqlserver://SERVER:1433;" +
 "DatabaseName=pubs;",
 "user", "passwd");

