
:

1 of 2 6/2/2007 10:56 AM

User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.5. Executing Statements

The primary purpose of programming to a specific database API is to execute SQL statements. The next section
covers the steps required to successfully execute a simple SQL statement, such as INSERT or UPDATE, that does not
return results. The section following focuses on the more complicated task of executing statements that do return
results.

5.5.1. Executing an ADO.NET Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using ADO.NET:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();
statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +
 " au_fname, contract) " +
 "VALUES ('xyz', 'Brown', 'Emmit', 1)";
int rowsInserted = statement.ExecuteNonQuery();
statement.Close();

To execute a statement using ADO.NET, take the following steps:

Create an ADO.NET Command object. SqlCommand is used for access to Microsoft SQL Server,
OdbcCommand is used for ODBC data sources, and OleDbCommand for OLE-DB data sources.

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

1.

After creating the appropriate Command object, a SQL statement needs to be associated with the
Command before it can be executed.

statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +
 " au_fname, contract) " +
 "VALUES ('xyz', 'Brown', 'Emmit', 1)";

2.

After assignment of the SQL statement, the Command object is ready for execution.

int rowsInserted = statement.ExecuteNonQuery();

There are three methods that can be used to execute ADO.NET Command objects:

ExecuteReader: Executes SQL statements that return rows, such as SELECT statements. The
return value is an ADO.NET DataReader object.

a.

ExecuteNonQuery: Executes SQL statements that do not typically return result sets, such as
INSERT, DELETE, or UPDATE statements. The return value is an integer value equal to the
number of rows affected by the statement execution.

b.

ExecuteScalar: Executes SQL statements that return a single value, such as statements
containing a single aggregate function.

c.

After the Command object is executed, it should be explicitly closed to free up resources thatd.

3.

:

2 of 2 6/2/2007 10:56 AM

have been allocated to execute statements and to communicate with the database server. To
free up these resources, invoke the Command object's Dispose method:

statement.Dispose();

The resources held by ADO.NET Statement objects are freed using the Dispose method,
which differs from the Close method used by all other ADO.NET types.

5.5.2. Executing a JDBC Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using JDBC:

java.sql.Statement statement = connection.createStatement();
int rowsInserter = statement.executeUpdate(
 "INSERT INTO authors(au_id, au_lname, au_fname, contract) " +
 " VALUES ('xyz', 'Brown', 'Emmit', 1)");
statement.close();

Executing a SQL statement first requires the creation of a JDBC Statement object. A Statement object
is produced by invoking the createStatement method on a valid JDBC Connection object:

java.sql.Statement statement = connection.createStatement();

1.

After a Statement object has been created, a SQL statement can be executed by invoking one of the
execute methods found on the Statement object. For non-query statements, the executeUpdate
method is the best method to use:

statement.executeUpdate("INSERT INTO authors(au_id, au_lname, " +
 "au_fname, contract) VALUES " +
 "('xyz', 'Brown', 'Emmit', 1)");

The executeUpdate method returns an int value indicating the number of rows inserted, updated, or
deleted during the execution of the SQL statement. If the execution fails, you will get a SQLException.

2.

After the Statement object has been executed, it may be executed again, or freed by invoking the
close method.

3.

statement.close();

