
:

1 of 4 6/2/2007 10:54 AM

User name:
Book: SQL in a Nutshell, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written
permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use that violates
the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

5.4. Managing Transactions

Most database programming APIs provide methods of controlling transactions, setting savepoints, and modifying
isolation levels. This section covers the mechanisms for controlling transactions from the ADO.NET and JDBC APIs
covered in this chapter.

5.4.1. Beginning a Transaction

Beginning a transaction is the first step in guaranteeing atomicity when executing multiple SQL statements. After
beginning a transaction, the transaction can be committed to make the changes performed by the executed SQL
statements permanent or the transaction can be rolled back to abort the changes and leave the database
unchanged.

5.4.1.1. Beginning an ADO.NET transaction

To begin a transaction using ADO.NET, invoke the BeginTransaction method on a connection object. A
Transaction object is returned that can be used in the creation of ADO.NET Command objects that execute within the
same transaction. To execute a Command object within the new transaction, you must first attach the Transaction
object to the Command object's Transaction property. Following is the syntax for starting a transaction by creating a
Transaction object in ADO.NET:

{Odbc|OleDb|Sql}Transaction transaction =
 connection.BeginTransaction([IsolationLevel.
 {Chaos | ReadCommitted | ReadUncommitted |RepeatableRead |
 Serializable | Unspecified}]);
{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();
statement.Transaction = transaction;

When creating the Transaction object, you can optionally specify the isolation level that is used for the transaction.
The isolation level controls how much (or little) your database transactions are insulated from the effects of other
transactions. The available isolation levels are:

Chaos

Pending changes of other transactions with higher isolation levels (ReadCommitted, ReadUncommitted,
RepeatableRead, or Serializable) cannot be changed.

ReadUncommitted

The lowest ANSI standard isolation level, unprotected against dirty reads, non-repeatable reads, and
phantom records.

ReadCommitted

The next highest ANSI standard isolation level above ReadUncommitted, protects against dirty reads.

RepeatableRead

The next highest ANSI standard isolation level above ReadCommitted, protects against dirty reads and

:

2 of 4 6/2/2007 10:54 AM

nonrepeatable reads.

Serializable

The highest ANSI standard isolation level. Protects against dirty reads, non-repeatable reads, and
phantom records.

Unspecified

Isolation level cannot be determined. This option is not typically passed into the BeginTransaction
method; its purpose is to provide an Unknown state for the Connection object's IsolationLevel
property. If the Transaction has this IsolationLevel, even after being set to another value, then it is
safe to assume that the database does not support the IsolationLevel that you requested.

For more information about isolation levels, see Programming Tips and Gotchas under SET TRANSACTION
Statement.

The isolation level used during SQL statement execution can have a significant impact on
the performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the database application.

5.4.1.2. Beginning a JDBC transaction

JDBC starts a connection in AUTO COMMIT mode, which is a setting that automatically commits changes made by
each SQL statement when it executes. To gain control over when changes are committed, the AUTO COMMIT setting
must be turned off. JDBC's mechanism of beginning a transaction is subtle compared to ADO.NET, which uses a
BeginTransaction method to begin a transaction. In JDBC, a transaction is started as soon as the AUTO COMMIT
mode is turned off or just after the transaction has been committed or rolled back. Committing or rolling back the
transaction doesn't turn the AUTO COMMIT mode back on, so multiple commits or rollbacks will need to be executed
to commit/roll back multiple units of work until the connection is closed or AUTO COMMIT is explicitly turned back
on. To turn off the AUTO COMMIT mode, execute the setAutoCommit method of the JDBC Connection object with a
false argument:

connection.setAutoCommit(false);

Beware that invoking setAutoCommit to turn AUTO COMMIT mode on or off when a
transaction has already begun will automatically commit that transaction.

JDBC also supports different isolation levels through the JDBC Connection interface. To set the isolation level used
for new transactions, invoke the setTransactionIsolation method with one of the following isolation levels:

TRANSACTION_NONE

Indicates transactions are not supported on the connection. This value is not typically used to set the
isolation level, but to query the connection for transaction support with the getTransactionIsolation
method on the Connection interface.

TRANSACTION_READ_UNCOMMITTED

The lowest ANSI standard isolation level, unprotected against dirty reads, nonrepeatable reads, and
phantom records.

:

3 of 4 6/2/2007 10:54 AM

TRANSACTION_READ_COMMITTED

The next highest ANSI standard isolation level above TRANSACTION_READ_UNCOMMITTED. Protects against
dirty reads.

TRANSACTION_REPEATABLE_READ

The next highest ANSI standard isolation level above TRANSACTION_READ_COMMITTED. Protects against
dirty reads and nonrepeatable reads.

TRANSACTION_SERIALIZABLE

The highest ANSI standard isolation level. Protects against dirty reads, nonrepeatable reads, and
phantom records.

For a more detailed explanation of transaction isolation levels, see Programming Tips and Gotchas under SET
TRANSACTION Statement.

Following is example code setting the isolation level in JDBC:

connection.setIsolationLevel(Connection.TRANSACTION_SERIALIZABLE);

The isolation level used on the connection can have a significant impact on the
performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the connection.

5.4.2. Committing a Transaction

Committing a transaction is a way to explicitly close the transaction and make its database modifications
permanent.

5.4.2.1. Committing an ADO.NET transaction

To commit a transaction using ADO.NET, invoke the Commit method on the Transaction object:

transaction.Commit();

ADO.NET is more object-oriented than many database-programming APIs, as can be seen from the encapsulation of
a transaction into a unique object type. This has the drawback of making the methods for explicitly ending a
transaction more difficult to find than those to begin a transaction, since they are on different object types.
Remember that the method to begin a transaction is on the Connection object, and the methods to commit or roll
back a transaction are found on the Transaction object.

5.4.2.2. Committing a JDBC transaction

Invoking the commit method on a JDBC Connection object commits a transaction within JDBC and begins a new
transaction:

connection.commit();

If the connection is in AUTO COMMIT mode, you will then get a Java exception of type SQLException because the
connection will not have a pending transaction.

5.4.3. Rolling Back a Transaction

Rolling back a transaction is a way to close the transaction explicitly and to discard any database modifications since
the transaction was started.

:

4 of 4 6/2/2007 10:54 AM

5.4.3.1. Rolling back an ADO.NET transaction

To roll back a transaction using ADO.NET, invoke the Rollback method on the Transaction object:

transaction.Rollback();

After rolling back a Transaction object, the Dispose method should be invoked to free any resources held by the
transaction:

transaction.Dispose();

5.4.3.2. Rolling back a JDBC transaction

Invoking the rollback method on a JDBC Connection object rolls back a transaction within JDBC and begins a new
transaction:

connection.rollback();

If the connection is in AUTO COMMIT mode, then a Java exception will be thrown of SQLException type.

