chll.gxd 5/22/01 10:53 AM Page 517 $
)R PUBLIC
RELEASE

Chapter 11

DATA ACCESS WITH SQLJ—
EMBEDDING SQL IN JAVA

An Overview of SQLJ

Connecting to a Database in SQLJ
Executing SQL Statements Using SQLJ
Processing Oracle SQL Object Types
Processing SQL Collections

Managing Large Data Types

Executing Stored Procedures and Functions
Summary

@ & & O O O 0o o

517

Prentice Hall PTR
This is a sample chapter of Oracle 8i and Java: From Client Server to E-Commerce
ISBN: 0-13-017613-3

For the full text, visit http://www.phptr.com

©2002 Pearson Education. All Rights Reserved.

chll.gxd 5/22/01

518

10: 53 AM Page 518 $

Chapter 11

This chapter covers the use of embedded SQL in Java, known as SQLJ technol-
ogy. The focus of the chapter is on how to use SQLJ rather than JDBC to perform
database operations from a Java application. The topics covered include:

Connecting to the database
Executing SQL statements
Processing SQL object types
Processing SQL collections

OooOoogod

The chapter also discusses Oracle JPublisher in more detail and shows how
you can use the Java classes generated by JPublisher when processing object
types or collections in SQLJ.

Note

In order to focus on the key functionality discussed, and to minimize the
amount of extra code written and documented, the examples shown in this
chapter do not use proper code-management techniques for closing connec-
tions and error handling. For example, the code listings close database con-
nections in the try section of a try-catch block. This does not cater for the case
when an error occurs. It is better practice to close a database connection in
the final section of a try-catch-finally block to ensure that the connection is
closed for the success and failure conditions in your code.

11.1 AN OVERVIEW OF SQLJ

For years, vendors have provided a way for third-generation languages to exe-
cute SQL, in order to access data in relational databases. It was only natural that
the same would happen with Java. The major benefits to developers are:

O Faster development because SQLJ typically requires fewer lines of code
when compared to using JDBC.

O Early validation of SQL syntax at compile time, leading to more robust
code.

SQLJ allows you to embed static SQL statements in Java code in a way that
is compatible with the Java design principles. Static SQL statements specify pre-
defined operations that do not change at runtime. Dynamic SQL statements spec-
ify SQL operations that are not predefined at compile time, where as a Java pro-
gram can construct the SQL statement on the fly at runtime.

e

chll.gxd 5/22/01

10: 53 AM Page 519 $

Data Access with SQLJ—Embedding SQL in Java 519

SQLJ and JDBC code can be mixed in the same program, and, as well, can
share connections and structures.

11.1.1 SQLJ COMPONENTS

SQLJ consists of two primary components:

1. An SQLIJ translator
2. An SQLJ runtime

One other component is a customizer that can be used to tailor SQLJ profiles
for a specific database.! Since Oracle SQLJ Translator uses an Oracle-supplied
customizer, you can access the extended features of an Oracle RDBMS environ-
ment.

11.1.2.1 The SQLJ Translator. The SQLJ translator is a preprocessor
that reads SQLJ source code from a file with an . sql j extension,? and produces a
Java source in a . j ava file and one or more SQLJ profile files.® The SQLIJ transla-
tor automatically compiles the Java source to produce the class file.

The Oracle SQLJ translator is available as a command-line utility for manu-
ally translating an SQLJ file into the Java source and class. Oracle JDeveloper au-
tomatically invokes the SQLJ translator when you build an SQLIJ file. During the
translation of the SQLJ source to the Java source, you can add an SQLJ translator
command-line option to perform syntax checking of embedded SQL statements.

The SQLJ Translator class library is located in a file called translator.zip,
which can be found in the ORACLE_HOME/ sql j /| i b sub-directory of your Ora-
cle8i installation. The t ransl at or . zi p file and the SQLJ runtime classes must
be in the class path at development time.

11.1.1.2 The SQLJ Runtime. SQLJ Runtime is automatically invoked
when a Java program containing SQLJ code is executed. The SQLJ Runtime com-
ponent implements the SQL operations embedded in the SQLJ code. Oracle SQLJ
runtime requires the use of an Oracle JDBC driver to access the database, even
though the SQLJ standard does not require the SQLJ runtime to use a JDBC dri-
ver to access a database. The SQLJ Runtime component class library is found in
the file ORACLE_HOVE/ sqgl j/1i b/ runti me. zi p. This file must be in the class

1An SQLIJ profile is a class, usually in serialized form, used by the SQLJ runtime to invoke SQL opera-
tions.

2 The Oracle SQLJ Translator is written in pure Java.

3An SQLJ profile file contains serialized Java objects in a file with a . ser extension. Alternatively, a
SQLJ profile can be created in a . cl ass file. The serialized Java objects contain details about the em-
bedded SQL operations in your SQLJ source code.

e

chll.gxd 5/22/01

520

10: 53 AM Page 520 $

Chapter 11

path when you are executing an SQLJ application. Note that the SQLJ Translator
is not required at runtime.

11.1.2 CREATING AN SQLJ FILE

Any text editor or development environment with an editor can be used to create
an SQLIJ file. Oracle JDeveloper is a development environment that provides sup-
port for creating SQLJ files. The key features of an SQLJ file are:

O The file must have an extension named sql j .

O The file must contain Java code for a Java class definition, with or without
embedded SQLJ statements. The file name must be the same as the name of
the public Java class contained in the file.

O The file must import the following two packages for compilation of SQLJ
runtime classes that are generated or used:
O sqlj.runtime.*
O sqlj.runtime.ref.*

Listing 11.1 shows the basic structure of an SQLJ source, and the general
syntax used to embed an SQL statement in the Java code.

Fil e nane: Regi sterCustoner. sqlj

01: inport sqlj.runtine.*;

02: inport sqlj.runtine.ref.*;

03:

04: public class RegisterCustoner {

05:

06: public static void main(String[] args) {
07: #sql { sql -statenent };

08: }

09: }

LISTING 11.1 SQLJ source with generic embedded SQL statement

Listing 11.1 notes:

O Lines 1 and 2 are the import statements for the required classes found in
SQLJ packages.

O Line 4 is the Java class name, which is the same as the file name and con-
tains the methods that executes SQLJ statements.

chll.gxd 5/22/01 10:53 AM Page 521 $

Data Access with SQLJ—Embedding SQL in Java 521

O Line 7 is an example of the generic syntax for an SQL statement when it is
embedded in your Java source code.
O The text #sql must precede all SQLJ statements.
O All SQL statements are placed between braces with no semicolon termi-
nator inside the braces. A semicolon is placed outside the closing brace
of the SQLJ statement.

Additional imports may be required, depending on the Java class used by
the SQLJ source code. The SQLJ code is still primarily a Java source file.

11.1.3 TRANSLATING THE SQLJ FILE

The SQLJ translator converts the SQLJ source into a Java source that is automati-
cally compiled into a class file.

11.1.3.1 Running the SQLJ Translator. The steps in running the SQLJ
translator from the command line are:

1. Add the file ORACLE_HOME/sqlj/lib/translator.zip to your class path.

2. Run the sglj command-line utility. The SQLJ translator executable is located
in your ORACLE_HOME/bin directory.*

The steps are shown in Listing 11.2.

Step 1: Set the C asspath
For W ndows NT:
set CLASSPATH=D:\orant8i\sqlj\lib\translator. zi p; UCLASSPATHY%

For Uni x Bourne or Korn Shell:
CLASSPATH=$ORACLE_HOVE/ sql j /1l i b/transl ator. zi p: $CLASSPATH
export CLASSPATH

For Uni x C Shell:
set env CLASSPATH $ORACLE HOVE/ sqlj/1ib/transl ator. zi p: $CLASSPATH

Step 2: Run the SQJ Transl ator
sqlj [options] file.sqlj

LISTING 11.2 Using the SQLJ translator

“4If you are using Oracle JDeveloper, the SQLJ Translator command-line utility is found in the bi n
subdirectory, relative to your base directory for the JDeveloper installation. This will typically be
<drive>:\Program Fil es\ Oracl e JDevel oper 3.0\ bi n, if you are using JDeveloper 3.0.

e

chll.gxd 5/22/01 10:53 AM Page 522 $

522 Chapter 11
If you enter the SQLJ command by itself, the application prints a brief listing
showing some help text for the command-line syntax and options.
The SQLJ translator has several command-line options. The command op-
tions are entered as:
- name
or,
- nane=val ue
The hyphen, as shown, must immediately precede the option name. The op-
tion’s value is either true or false. Turn on the option by entering the option as-

name or —name=true, otherwise you must enter —-name=false to turn the option
off. Table 11.1 is a brief list of SQLJ translator command-line options.

TABLE 11.1 SQLJ translator command-line options

OPTION DESCRIPTION AND VALUES

-user=user/password The username and password used by the SQLJ translator to log into
a database specified by the url option. The user option is only used if
you want the SQLJ translator to perform syntax checking of
embedded SQL statements.

-url=jdbc-url The JDBC URL that identifies the database used for validating SQL
statements and the database structures on which they operate. By
default the URL is “j dbc: or acl e: oci 8: @.

-d=directory Specifies the output root directory for generated binary (ser and
cl ass) files. The generated Java source file is not affected by this
option.

-status Displays status messages to the screen during the translation
process.

-compile=false Suppresses compilation of the generated Java source. No class files
are created. Compilation is performed by default.

-ser2class Creates profile files in the form of . cl ass files, not . ser files.

Note: This option should be used if your JVM environment does not
support loading SER files.

-J-option Specifies command-line options for the JVM that runs the SQLJ trans-
lator.

-classpath=classpath Specifies the CLASSPATH to the JVM (java) and compiler (javac)
used by the SQLJ translator.

-linemap Causes the translator to generate SQLJ source-line numbers as com-

ments in the Java source.

chll.gxd 5/22/01 10:

53 AM Page 523 $

Data Access with SQLJ—Embedding SQL in Java 523

You specify command-line options separated by one or more spaces. For ex-

ample:

sql

j —user =bookst ore/ bookstore -1inemap
—url =j dbc: oracl e:thin: @ocal host: 1521: ORA815 file.sql]j

The example should be entered on one line. For clarity, the example is

shown on more than one line with no command-line continuation characters,
which are platform-dependent, if supported.

the

1

2.

file

The SQLJ translator performs the following steps in sequence depending on
options used:

. The Java Virtual Machine invokes the SQLJ Translator.

The translator parses the SQLJ source code, checking for proper SQLJ
syntax.

. The semantics checker is invoked to check whether the embedded SQL
statements use valid database structures, such as columns, tables, proce-
dures, data type validation, and more.

The SQLJ source code is converted into a Java source that makes calls to the
SQLJ runtime API. One or more SQLJ profiles are also created (see below,
“Profile Files,” for more information). The SQLJ translator also generates a
file known as the profile-keys class, which is the class definition file for a spe-
cialized class used in conjunction with the profiles. The profile-keys class is
used to load and access serialized profiles, and contains mapping informa-
tion between the SQLJ runtime calls and their SQL operations stored in a se-
rialized profile. The SQLJ Runtime is called to implement the actions of
your embedded SQL operations.

Normally, the SQLJ Translator invokes the Java compiler to compile the
generated Java source, and, optionally, produce a class file for each of the
serialized resource files (. ser files) if you specified the —ser 2cl ass op-
tion.

. The Oracle SQLJ customizer is invoked. This step can be suppressed if you
use the option: - prof i | e=f al se.

11.1.3.2 Files Generated by the SQLJ Translator. If your SQLJ source
name is called Shoppi ngCart. sql j , then the SQLJ Translator generates at

least the following files:

1

2

. Shoppi ngCart . j ava—the generated Java source, which includes calls to
the SQLJ Runtime to implement the operations specified by SQLJ state-
ments.

. Shoppi ngCart . cl ass—the compiled version of the generated Java
source.

e

chll.gxd 5/22/01

524

10: 53 AM Page 524 $

Chapter 11

3. Shoppi ngCart _SJProfi |l eKeys. ser —contains mappings for the SQLJ
Runtime calls in your application and the SQL operations stored in the seri-
alized profile.

4. Shoppi ngCart_SJProfil e0. ser—is the generated profile file describ-
ing the SQL operations to be performed.

Profile Files

The generated profile files contain information about all of the embedded
SQL statements in your SQLJ source code. This includes:

1. SQL operations to execute.

2. Tables to access.

3. Stored procedures and functions to call.
4. The data types being manipulated.

The SQLJ Runtime accesses the profile files (using information in the
profile-key class) to retrieve the SQL operations and pass them to the JDBC driver
for processing.

By default, profiles are placed in serialized resource files, each with a . ser
extension. The SQLJ Translator command-line option —ser 2cl ass is used to
specify that the profiles should be created as a . cl ass file.

SQL operations are executed in the context of a database connection called a
connection context. The SQLJ language provides a way to create more than one
connection context in your application. This would be typical for applications
needing to manage data in different databases, such as a funds-transfer applica-
tion. The SQLJ Translator generates a profile file for each connection context used
in your application A unique number, starting from 0 and incremented by 1 for
each connection context, is appended to the file name.

11.1.4 RUNNING THE SQLJ FILE

In general, any Java program that connects to a database can be SQLJ enabled.
For example, if the SQLJ file contains a mai n method, as used in a standard Java
application, you can run the class generated by the SQLJ Translator using the
j ava command-line tool. If you created an SQLJ source as a Java applet, you can
run the Applet class generated by the SQLJ Translator in a Java-enabled Web
browser.

Oracle JDeveloper has built-in support for compiling, debugging, and exe-
cuting SQLJ applications. Oracle JDeveloper debugger makes it easier to debug
SQLJ code by allowing you to debug from the SQLJ source rather than the gener-
ated Java source.

chll.gxd 5/22/01

10: 53 AM Page 525 $

Data Access with SQLJ—Embedding SQL in Java 525

11.2 CONNECTING TO A DATABASE IN SQLJ

01:
02:
03:
04:

An SQLJ application always has a connection context. Normally, if your applica-
tion is only using a single database connection, you use the default connection
context. If you require additional database connections from the same applica-
tion, you can create a named connection context.

11.2.1 SETTING THE DEFAULT CONNECTION CONTEXT

Creating a default connection does not require an explicit context name. The
process has two main steps:

1. Load a database JDBC driver class or register an instance of the driver.

2. Set the default connection context by providing a connection string and op-
tional username/password.

In order to set the default connection context, you need to create a Default-
Context object. The DefaultContext object is typically used for applications that
require a single database connection.

Listing 11.3 shows two ways to create a connection using a DefaultContext
object to set the default connection context for SQLJ statements in your applica-
tion.

package com prenhal | . OFJP. sql j ;
i mport sqlj.runtinme.*;

import sqlj.runtime.ref.*;

i mport java.sql.*;

05:

06:
07:
08:
09:
10:

public class MakeConnection {
publ i c MakeConnection(String url) {
try {
Dri ver Manager . regi sterDriver(
new oracle.jdbc.driver.OacleDriver());

11:

12:
13:
14:
15:

/1 Setting a Default Context froma JDBC connection
Connection conn = DriverManager. get Connecti on(url);
Def aul t Cont ext dctx = new Def aul t Cont ext (conn);

Def aul t Cont ext . set Def aul t Cont ext (dct x) ;

16:

17:
18:

String result;
#sql { select user||' '||to_char(sysdate)

LISTING 11.3 Creating a connection for the default context

e

chll.gxd 5/22/01

526

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34: }

10: 53 AM Page 526 $

Chapter 11

into :result
fromdual };
Systemout.println("result:

+ result);

dct x. cl ose();

}

catch (Exception e) {
e.printStackTrace();

}
}

public static void main(String[] args) {
new MakeConnection("jdbc:oracle:thin:" +
"bookst or e/ bookst or e@ ocal host: 1521: ORA815") ;

LISTING 11.3 Continued

Notes for Listing 11.3:

Lines 2 and 3 are required imports for an SQLJ application. The java.sql
package is present because JDBC calls are used to load the JDBC driver and
create a JDBC Connection.

Lines 9-13 load the JDBC driver and create a JDBC connection using the
DriverManager.

Line 14 creates a DefaultContext object to be associated with the JDBC Con-
nection created in line 13.

Line 15 sets the default context for all unqualified SQLJ statements, which
execute using the underlining JDBC connection. This example shows how
you can work with SQLJ and JDBC code in the same application.

Lines 18-20 show an SQLJ statement executing a SELECT statement to
guery the current database user name and the current date.

Line 23 closes the default connection context. Note that the JDBC connection
is also closed by this action. You can keep the underlying JDBC connection
open by calling the DefaultContext close() method with a f al se value for
the boolean argument. For example:

dct x. cl ose(fal se)?

®You can use the class constant Connect i onCont ext . KEEP_CONNECTI ON as the parameter value,
instead of the keyword f al se.

e

chll.gxd 5/22/01 10:53 AM Page 527 $

Data Access with SQLJ—Embedding SQL in Java 527

Since all SQL code embedded as SQLJ statements can throw an SQLExcep-
tion, the code should either be enclosed in a try-catch-finally block or the excep-
tion must be propagated to the caller.

11.2.1.1 Alternative Ways of Setting the Default Context. An alterna-
tive way to set the default context is:

01: dass.forNanme("oracle.jdbc.driver.O acleDriver");
02: Def aul t Cont ext . set Def aul t Cont ext (new Def aul t Context (url, false));

Line 1 loads the JDBC driver, which is required for line 2 to work.

Line 2 sets the default connection context for SQLJ statements that have not
been qualified with a connection context name. The DefaultContext object is used
to create the connection context used by the setDefaultContext() method.

There are more than one DefaultContext constructors. The example uses a
form of the constructor that has a URL as the first parameter, and a boolean value
as the second parameter to set the auto-commit state to false for the underlying
JDBC connection.

If you want control over transaction processing, set the auto-commit mode
to false. Another way to set auto-commit to false is to use the connection object
associated with the default context. For example:

/1 Assume you have used the Defaul t Context constructor with a
/1 connection object
Def aul t Cont ext dctx = new Def aul t Cont ext (
Dri ver Manager . get Connection(url));

/] Set the connection associated with the default context to fal se
dct x. get Connecti on() . set Aut oConmi t (f al se);

Another Oracle-specific way to create a default context is to use the static
connect () method in the oracl e. sqglj.runtime. Oracl e class. For exam-

ple:
Def aul t Cont ext dctx = Oracl e.connect(url);
Using the Or acl e. connect () method performs the following operations:

O Loads the Oracle JDBC driver.
O Connects to the database specified by the URL parameter.
O Sets the default context and returns the default context.

chll.gxd 5/22/01

528

10: 53 AM Page 528 $

Chapter 11

If you use either of the alternative techniques discussed here, then you do
not need to import the java.sgl package. However, if you use the Or acl e. con-
nect () technique, your code will only work with the Oracle SQLJ class libraries,
and so is less portable.

Once you have a default context object, you can obtain the associated JDBC
connection as follows:

Connection conn = dctx. get Connection();

Regardless of which method you use, you can still mix JDBC calls and SQLJ
statements in the same application.

11.2.2 CREATING AND USING ADDITIONAL CONNECTION CONTEXTS

Your SQLJ application may need more than one database connection. This is
achieved by creating additional connection contexts. Each connection context is
associated with a new database connection, either to the same or a different data-
base. To create an additional connection context:

O Declare a connection context class, using an SQLJ context declaration.
For example:
#sql context MyContext;

In this example, the SQLJ Translator generates a class called MyContext.
The SQLJ language specification provides for declarations and statements. There
are two types of declarations:

1. Context class declarations (discussed here)

2. Iterator class declarations (discussed below in section 11.3.2, subsection
“Reading Multiple Rows Using Iterators™)

The SQLJ Translator generates a class with a name as specified by you in the
declaration. A declaration type can be preceded by Java modifiers, such as pub-
l'ic,private, or protected, and followed by an i npl enent s clause, as fol-
lows:

#sql <nodifiers> context C assNane inplenments |nterfaceNane, ..

To use the connection context:

1. Instantiate an object for the new connection context class.

e

chll.gxd 5/22/01 10:53 AM Page 529 $

Data Access with SQLJ—Embedding SQL in Java 529

2. Qualify the SQLJ statements using the object variable name, enclosed in
square brackets,’ for the new connection context object.

For example:

01: package com prenhal | . OFJP. sql j;

02: import sqlj.runtine.*;

03: inmport sqglj.runtime.ref.*;

04: inport oracle.sqglj.runtine.*;

05:

06: #sgl context MyContext;

07:

08: public class NewContext {

09: public NewContext(String urll, String url?2) {

10: String userNanmel, userNamez;

11: try {

12: Cl ass. forNanme("oracl e.jdbc.driver.OracleDriver");

13: Def aul t Cont ext . set Def aul t Cont ext (

14: new Defaul t Context (url 1, false));

15: /] Execute in the default context

16: #sgl { select user into :userNanel from dual };

17: Systemout.println("User(default context): " + userNanel);
18:

19: MyCont ext ctx = new MyContext(url 2, false);

20: /] execute in the additional context

21: #sgl [ctx] { select user into :userNane2 from dual };
22: System out. println("User(new context): " + userNane2);
23:

24 Def aul t Cont ext . get Def aul t Cont ext (). cl ose();

25: ctx.close();

26: }

27: catch (Exception e) {

28: e.printStackTrace();

29: }

30: }

31:

32: public static void main(String[] args) {

33: new NewCont ext (

34: "j dbc: oracl e: oci 8: bookst or e/ bookst or e @RA815",

35: "jdbc: oracl e: oci 8:scott/tiger @RA815");

36: }

37: }

LISTING 11.4 Using more than one connection context

®In the SQLJ syntax, square brackets are required around the object reference name to qualify state-
ments executed in the specified context.

e

chll.gxd 5/22/01

530

#sql

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

10: 53 AM Page 530 $

O

Chapter 11
Notes for Listing 11.4:

In line 6, the SQLJ context declaration creates the context class MyContext to
be used for creating additional connection context objects.

Lines 13 and 14 set the default context using the connection formed from the
URL in urll.

Line 16 executes a SQL SELECT statement using the default context.

Line 19 creates a new context object using the MyContext class, for the URL
in url2.

Line 21 executes another SQL SELECT using the connection context ct x de-
fined as a MyContext object. To execute the SQLJ statement in the second
connection context (MyContext), you use the ct x reference variable in
square brackets, i.e., [ct x], and place it between the #sql token and the
SQL statement.

Line 24 closes the default connection.

Line 25 closes the new connection context.

The SQLJ Translator generates a . j ava file, and a . cl ass file for the My-

Cont ext SQLJ declaration on line 6 for the NewCont ext class.

Listing 11.5 shows some of the Java code generated for the following SQLJ

declaration:

cont ext MyCont ext;

cl ass MyCont ext
extends sqlj.runtine.ref.ConnectionContextl| npl
i mpl enents sqlj.runtine. Connecti onCont ext

{

publ i c MyCont ext (Connection conn) throws SQ.Exception {
super (profiles, conn);

}

public MyContext(String url, String user,

:

String password, bool ean autoConmit)

t hrows SQLException {
super(profiles, url, user, password, autoConmmt);

private static final sqglj.runtine.ref.Profil eGoup

profiles = new sqglj.runtinme.ref.Profil eGoup();

LISTING 11.5 Example of a generated context class

e

chll.gxd 5/22/01

10: 53 AM Page 531 $

Data Access with SQLJ—Embedding SQL in Java 531

Notes for Listing 11.5:

O Line 2 shows that the connection context MyCont ext is a subclass of Con-
necti onCont ext | npl in the sqlj.runtine.ref package, and imple-
ments the Connect i onCont ext interface from the sql j . runti me pack-
age.

O Lines 5-7 and 9-13 represent two of the five constructors that must be pro-
vided for a connection context class definition.

O The other methods produced by the SQLJ Translator, but not shown in the
example, include:
O The getDefaultContext() and setDefaultContext() methods for getting
and setting the default context, respectively.
O The getProfileKey() method for getting the profile key file.
O The getProfile() method for getting a profile file used for the connection
context.

It is not important to delve into the details of these classes unless you need
to make customizations of your own. The rest of this chapter focuses on the usage
of SQLJ technology, and occasionally shows some of the underlying code gener-
ated.

11.2.3 EXECUTION CONTEXTS

Each connection context is created with an implicit execution context object. The
execution context provides the environment in which an SQL operation is exe-
cuted.

The execution context class, called sql j . runti nme.Executi onCont ext,
contains accessor methods for execution control, status, and cancellation of an
SQL statement. The execution control methods modify the semantics of subse-
guent SQL operations. The execution status methods describe the results of the
last SQL operation. For example, they detect the number of rows modified by an
UPDATE statement. The execution cancellation methods terminate the current
SQL operation.

The code snippet that follows, in the MySQLJApp class, shows how you can
obtain a reference to an Executi onCont ext object that is implicitly created
with the default connection context. The code uses the execution context to deter-
mine the number of rows affected by an SQL UPDATE statement.

01: package com prenhal |l . OFJP. sql j;
02: inport sqlj.runtine.*;
03: inport sqlj.runtine.ref.*;

04:

05: public class MySQ.JApp {

chll.gxd 5/22/01

532

06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

}

10: 53 AM Page 532 $

Chapter 11

public static void main(String[] args) {
String url = "jdbc:oracle:thin:" +
"bookst or e/ bookst ore@ ocal host: 1521: ORA815";
try {
if (args.length == 1) {
url = args[0];
}

O ass. forName("oracle.jdbc.driver.OracleDriver");

Def aul t Context dCtx = new Defaul t Context (url, false);
Def aul t Cont ext . set Def aul t Cont ext (dCt x) ;

Executi onCont ext exeCtx = dCtx. get Executi onCont ext () ;

#sql { update courier
set cost _per _item = cost_per item* 1.1 };

System out. printl n(exeCt x. get Updat eCount () +
" row(s) updated");

dC x. cl ose();

}

catch (Exception e) {
e.printStackTrace();

}

}

The bold text in line 18 shows how to obtain the implicit execution context object
associated with the default connection context. In line 23, the number of rows
affected by the preceding SQL UPDATE operation is determined by calling the
execution context getUpdateCount() method. The getUpdateCount() accessor
method is referred to as a status method.

When writing a multithreaded application, you may want each thread to
manage the execution control, status, and cancellation of its own SQL operations.
You can create an execution context object for each thread that uses the same con-
nection context. To use multiple execution contexts, you explicitly create the exe-
cution context object and qualify each SQL operation with the execution context
variable. The execution context variable inside square brackets is placed between
the #sql token and the SQL operation.

The next two code snippets show how to explicitly associate an execution
context with an SQL statement. The first example uses the default connection
context, and the second uses a named connection context.

chll.gxd 5/22/01

10: 53 AM Page 533 $

Data Access with SQLJ—Embedding SQL in Java 533

11.2.3.1 ExecutionContext with a Default Connection Context.
Executi onCont ext exeCtx = connCt x. get Executi onCont ext ();

#sql [exeCtx] { update courier
set cost_per_item= cost_per_item* 1.1 };

The default connection context is used because it is absent from the SQLJ
statement.

11.2.3.2 ExecutionContext with a Named Connection Context. If
you have multiple connection contexts and want to execute an SQL operation in
an explicit execution context on a specific connection, use the following syntax in
the SQLJ statement:

Def aul t Cont ext connCtx = new Defaul t Context (url, false);
Def aul t Cont ext . set Def aul t Cont ext (connCt x) ;
Executi onCont ext exeCtx = connCt x. get Executi onCont ext ();

#sql [connCtx, exeCtx] { update courier
set cost_per_item = cost_per_item* 1.1 };

This example shows that you place the connection context variable con-
nCt x, followed by the execution context variable exeCt x, inside the square
brackets and separated by a comma. The connection context variable must ap-
pear before the execution context variable.

The ExecutionContext class has accessor methods known as status methods:

O getWarnings()—to get the first warning for the most recent SQL statement.
Then call getNextWarning() to access chained warnings.

0 getUpdateCount()—the number of rows affected by the SQL statement.
It also has accessor methods known as control methods:

O setBatching(boolean), isBatching()—to set set batching or determine
whether batching is in operation.

setBatchSize(), getBatchSize()—to set or get the size of batching operations.

O setMaxRows(), getMaxRows()—to set or get the number of rows that can be
processed for a query operation, excess rows are silently ignored.

O

The accessor methods known as cancellation methods are:

O

setQueryTimeout(), getQueryTimeout()—to manage query execution time.
O cancel()—to abort a query when executing in a multithreaded environment.

chll.gxd 5/22/01

534

10: 53 AM Page 534 $

Chapter 11

11.3 EXECUTING SQL STATEMENTS USING SQLJ

The major benefit of executing SQL statements in SQLJ is the simplicity of access-
ing the database from a Java program, particularly if you are already conversant
with the SQL language. If the SQL statement is a complex one, requiring or re-
turning many column values, many lines of JDBC code can be reduced to one em-
bedded SQLJ statement, excluding the declaration of variables required to store
values for the SQL statement.

Consider the following SQL statement:

SELECT nane, surnane, enail FROM custonmer WHERE id = val ue
If you want to process this statement with JDBC calls, the following frag-

ment of code to read a single row is required (ignoring the establishment of the
database connection):

01: public void getCustonerlnfo(Connection conn, int id) {

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19: }

String nane;
String surnane;
String email;

Pr epar edSt at enent ps = conn. prepar eSt at erent (
"sel ect nane, surname, enmail from custoner where id = ?");
ps.setlnt (1, id);
Result Set rs = ps. executeQuery();
if (rs.next()) {
name = rs.getString(1);
surname = rs.getString(2);
emai|l = rs.getString(3);
System out . printl n(
"Custoner: " + nanme +

+ surname + + email);

}

rs.close();
ps. cl ose();

The equivalent code to read a single row in SQLJ is:

01: public void getCustomrerlnfo(int id)
02: throws SQLException {

03:
04.

String nane;
String surnane;

chll.gxd 5/22/01

10: 53 AM Page 535 $

Data Access with SQLJ—Embedding SQL in Java 535
05: String email;

06:

07: #sql { select nane, surnanme, enmil into :nane, :surnane, :enail
08: fromcustoner where id = :id };

09: System out. println(

10: "Customer: " + nanme + " " + surnane + " " + emil);

11: }

The SQLJ code requires less typing than the JDBC code, and is far easier for the
programmer to read. In addition, using the SQLJ Translator command-line op-
tions, you can validate the SQL statement at compile time, which you cannot do
with JDBC statements.

Line 7 of the SQLJ code example introduces some interesting syntactic ele-
ments of an SQLJ statement:

O Unlike with JDBC, no quotes are used around the SQL statement.

O In the SQL statement, you bind the values from, or into, Java host variables
by using a colon immediately preceding the Java variable name.

O The SQL statement can be split over one or more lines, with no need for
line-continuation characters.

O The SQL statement must be enclosed inside braces, and a semicolon is
placed outside the closing brace.

The SQL SELECT statement in the SQLJ example is limited to fetching only one
row, because the Java variables can only contain one variable at a time. In the
SQLJ example, an SQLException is thrown if either of the following cases arise:

O No rows are returned by the query.
O More than one row is returned by the query.

Although these two conditions can occur in the JDBC code example, exceptions
are not thrown. The JDBC code gives you more control over managing these error
conditions.

If you wish to process more than one row in a SQLJ application, you need to
use an SQLJ iterator (refer to section 11.3.2, subsection “Reading Multiple Rows
Using Iterators™).

11.3.1 USING HOST VARIABLES

In an SQLJ statement, you use or modify the value of a Java variable by prefixing
it with a colon. A Java variable prefixed with a colon in an SQLJ statement is
known as a bind/host variable. For example:

chll.gxd 5/22/01

536

10: 53 AM Page 536 $

Chapter 11

int customerld = 10;
String custoner Naneg;

#sql { SELECT nane | NTO : cust oner Nane
FROM cust omer
WHERE id = :custonerld };

The SQLJ Translator sets the mode of a host variable as input, output, or
input-output, depending on the context of the variable usage in the SQL state-
ment. By default, the mode is IN, except when the host variable is part of an
INTO list in a SELECT statement, or is the target of an assignment in an SQLJ SET
statement, in which case the mode is OUT. You can explicitly set the mode of the
host variable by using one of the following mode specifiers:

O IN—for input only.
0 OUT—for output only.
0 INOUT—for input and output.

Mode names are case-insensitive. For example:
: node- speci fi er host Var
where node-specifier = IN or OUT or | NOQUT, for exanple:

;I N host Var
:in host Var

: QUT host Var
: I NOUT host Var

For readability, it is recommended that no spaces appear between the colon
and the mode specifier. At least one space character is required between the
mode specifier and the host variable name.

You can create host expressions for input values by enclosing an expression
in parentheses after the colon or mode specifier. Examples are:

: (hostVar1l + host Var 2)
: I N(host Var1 * host Var 2)

The parentheses, as shown, are required to enclose the expression. To set
the value of a Java host variable, you can uses a host expression with the SQLJ
SET statement. For example:

chll.gxd 5/22/01 10:53 AM Page 537 $

Data Access with SQLJ—Embedding SQL in Java 537
j ava. sqgl . Dat e host Var 1;
#sql { SET :hostVarl = to_char(sysdate) };
/1 This is equivalent to:
#sql { SET :QUT hostVarl = to_char(sysdate) };
/1 This equivalent to an enbedded PL/SQ. bl ock:

#sql { BEGA N : QUT hostVarl := to_char(sysdate); END;, };

Note

These PL/SQL block expressions are evaluated prior to the SQLJ statement
being executed.

The rule for using host variables is: Prefix the Java variable with a colon if it is in-
side the braces of the SQLJ statement.

11.3.2 USING DML AND DDL STATEMENTS IN SQLJ

Executing an SQL data manipulation or data definition language statement is as
simple as placing the SQL statement inside braces after the #sql token. Listing
11.6 shows two methods using DDL statements:

O The createTable() method executes a CREATE TABLE statement.
O The dropTable() method executes a DROP TABLE statement.

01: public void createTable() {

02: try {

03: dropTabl e();

04: #sql { create table nmusic_cd (

05: id nunber(4) primary key,

06: title varchar2(40) not null,
07: artist varchar2(40) not null,
08: create_date date) };

09: }

10: catch (Exception e) {

11: e.printStackTrace();

LISTING 11.6 Using DDL statements in SQLJ

e

chll.gxd 5/22/01

538

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

}

10: 53 AM Page 538 $

Chapter 11

}

public void dropTabl e() {

}

i nt exi st Count;
try {
#sql { select count(*) into :existCount
fromuser_tables where table_name = 'MJUSIC CD };
if (existCount > 0) {
#sql { drop table nusic_cd };
}

}
catch (Exception e) {

e.printStackTrace();
}

LISTING 11.6 Continued

Notes on Listing 11.6:

O

Line 3 calls the dropTable() method before creating the table.

O Lines 15-27 show the dropTable() method, which uses a SELECT statement
to read the Oracle data dictionary table USER_TABLES to determine
whether the MUSIC_CD table exists. If the MUSIC_CD table does exist, the
existCount is non-zero, and the table is dropped. The example shows that
SQLJ statements can be placed inside flow-control statements.

The next example, in Listing 11.7, uses an INSERT statement to add a row to the
MUSIC_CD table.

public void insertCD(int id, String title, String artist) {

}

t

}

ry {

#sql { insert into music_cd (id, title, artist, create_date)
values (:id, :title, :artist, sysdate) };

#sql { commit };

catch (Exception e) {

}

e.printStackTrace();

LISTING 11.7 Using DML in SQLJ

e

chll.gxd 5/22/01

10: 53 AM Page 539 $

Data Access with SQLJ—Embedding SQL in Java 539

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:

Notes on Listing 11.7:

Line 4 of the INSERT statement uses the Java method arguments as input
host variables to supply values for the insert statement.

Line 5 executes a COMMIT statement, assuming that auto-commit has been
disabled for the default context used.

11.3.2.1 Storing NULL Values. Java primitive types, such as byte,

int, short, I ong, fl oat, doubl e, and bool ean, cannot be used to store a
database NULL value in a column. To store a NULL value in a column, you must
use one of the Java wrapper classes that has been set to a Java nul | reference
value, and use the Java object as the host variable in an SQL operation. An exam-
ple of inserting a NULL value into a numeric column is shown in Listing 11.8.

public void insertCD(int id, String title, String artist) {
I nt eger year Rel eased = nul | ;
try {

}

#sqgl { insert into music_cd

(id, title, artist, year _rel eased, create_date)
val ues
(:id, :title, :artist, :yearReleased, sysdate) };

#sql { commit };

catch (Exception e) {

}
}

e.printStackTrace();

LISTING 11.8 Inserting a NULL value

Notes on Listing 11.8:

Line 2 declares a Java object variable yearReleased for the Integer, which is
initialized to a nul | value.

Line 7 in the INSERT statement uses the yearReleased as the input host vari-
able for the year_released column. A NULL value is inserted into the
year_released column, because the SQLJ code detects that the object refer-
ence is null and converts this into a database NULL value for the column.

The same technique can be used for changing a column value to a NULL, if ap-
propriate, in an UPDATE statement.

e

chll.gxd 5/22/01

540

10: 53 AM Page 540 $

Chapter 11

To read a column containing a NULL value, you must use a Java object vari-
able defined as an appropriate wrapper class as a host variable. Then, if and only
if the Java object reference is not a nul | , you can convert the value in the Java ob-
ject into its primitive value, At runtime, if you attempt to read a database NULL
value into a primitive, the SQLJ statement will fail with the following exception
message:

sqlj.runtime. SQLNul | Exception: cannot fetch null into prinmtive data type

Reading database NULL values is discussed below in section 11.3.3.

11.3.2.2 Transactions in SQLJ. Transaction control is handled in the
same way as storing NULL values, since you perform these tasks in a pure SQL
environment. For manual control, you must ensure that the connection context
used has auto-commit disabled. To issue a COMMIT, use the SQLJ statement:

#sql { COWM T };
To ROLLBACK, execute the following SQLJ statement:
#sql { ROLLBACK };

You can use the auto-commit feature of the underling JDBC connection if appro-
priate.

11.3.3 QUERY PROCESSING

In the context of a programming language, data can be queried in two ways. You
can retrieve a single row at a time or process a set of rows. Reading a single row
requires that you have some way of targeting one and only one row in your
qguery using search criteria, usually an appropriate condition in the WHERE
clause of your query.

Processing multiple rows requires creating a cursor structure and stepping
through each row of data. In JDBC, you use a ResultSet; in SQLJ, you create an it-
erator.

11.3.3.1 Reading a Single Row. Reading a single row is as simple as
embedding a SELECT statement in the code, with the addition of an INTO clause
to the query. The syntax for the general structure of a SELECT statement to re-
trieve a single row is:

#sql { SELECT col (s) I NTO vari abl e(s)

FROM t abl e
WHERE condition(s) };

e

chll.gxd 5/22/01 10:53 AM Page 541 $

Data Access with SQLJ—Embedding SQL in Java 541

The number of variables specified in the INTO clause must match the num-
ber of columns queried. The data type of each Java variable in the INTO clause
must be type-compatible with the SQL type of its corresponding column. The SE-
LECT statement can use any form of Oracle SQL discussed in the earlier chapters
of this book. Listing 11.9 shows an example of selecting a single row from the
MUSIC_CD table.

public void readCd(int id) {
String title = null;
String artist = null;
I nt eger year Rel eased = nul | ;
java.sqgl . Date createDate = null;

try {
#sql { SELECT title, artist, year_rel eased, create_date

INTO :title, :artist, :yearRel eased, :createDate
FROM nusi ¢c_cd

WHERE id = :id };
Systemout.printIn("Cd: " +id + " " + title +" " +
artist +" " + yearReleased + " " +

createDate);

}
catch (Exception e) {

e.printStackTrace();

}
}

LISTING 11.9 Selecting a single database row

Errors can occur if the search criteria value entered causes no rows to be re-

turned for the query. In this case, the SQLException thrown contains the follow-
ing message:

j ava. sqgl . SQLExcepti on:
no rows found for select into statenent

If more than one row is returned by the SELECT statement, the following excep-
tion message is generated by the SQLJ Runtime:

j ava. sql . SQLExcepti on:
nmultiple rows found for select into statenent

e

chll.gxd 5/22/01

542

10: 53 AM Page 542 $

Chapter 11

If you want to read the Oracle ROWID pseudo-column for each row, in-
clude the ROWID in the query and read the value into a Java string variable. The
ROWID value can then be used in the WHERE clause of the UPDATE or DELETE
statements for fast row access.

11.3.3.2 Reading Multiple Rows Using Iterators. Reading more than
one row requires the creation of an SQLJ iterator. An iterator is a strongly typed
result set. The data types expected for each column in the query are controlled by
an SQLJ iterator declaration. There are two types of SQLJ iterators:

O A named iterator declares the names and data type of each column.
O A positional iterator declares only the data type of each column.

The syntax for declaring iterators is:
#sql iterator Custonerlterator (int id, String nane);
#sql iterator Courierlterator (int, String);

The SQLJ Translator creates a Java class for each SQLJ iterator where the class

name is derived from the name following the iterator keyword. Each iterator is

associated with a query. The number columns selected in the query must match

the number of parameters defined inside the parentheses after the iterator name.
To use an iterator, you perform the following steps:

1. Declare the iterator class.
2. Define a Java variable of the iterator class type.

3. Execute a query, compatible with the iterator definition, that returns its re-
sults into the Java iterator variable.

4. Use the iterator class methods to fetch each row, and process the column
data in each row. The way you process data returned from a named iterator
is different from the way you use a positional iterator, but it is conceptually
similar to the way you process a JDBC ResultSet.

Here is the general syntax of an iterator and a use example:

/1 1. Declare the iterator class
#sql iterator Mylterator (int, String);

/1 2. Define a variable using the iterator class
Mylterator iter;

LISTING 11.10 Syntax and example for using an iterator

e

chll.gxd 5/22/01

10: 53 AM Page 543 $

Data Access with SQLJ—Embedding SQL in Java 543

/1 3. Execute a query conpatible with the iterator definition
#sql iter = { SELECT id, name FROMtable ...};

/1 4. process the result data using the iter object methods

For exanpl e:

#sql iterator Courierlter (int id, String nane);

public class Courier {

public Courierlter getCouriers() {
Courierlter iter = null;

try {
#sql iter = { SELECT id, name FROM courier };

}
catch (Exception e) {

}

return iter;

LISTING 11.10 Continued

Note that the SQLJ Translator generates a Java class for each iterator de-
clared. The methods contained in the generated iterator class enable it to:

O Step through the rows retrieved by a query returning a result set.
O Get column values.

Named and positional iterator declarations cause different method names
to be generated in their respective iterator classes.

Declaring and Using a Named Iterator

To declare a named iterator, you must specify a data type and a name for
each column value expected from a query that returns a result set to the iterator.

The SQLJ Translator uses the column names specified in the iterator decla-
ration to derive the names of the column value accessor methods in the iterator
class. These method names are case-sensitive, as defined by the names in the iter-
ator declaration. The column names in the associated query must match the

chll.gxd 5/22/01

544

#sql

10: 53 AM Page 544 $

Chapter 11

names defined in the iterator declaration. However, the column names in the
guery are treated case-insensitively. The Java data type specified for each iterator
column must be type-compatible with its corresponding database column.

Listing 11.10 shows how to create a hamed iterator to read some of the de-
tails from the customer table.

terator CustomerList (int id, String name, String surnane);

LISTING 11.10 Creating a named iterator for the CUSTOMER table

The SQLJ Translator generates a Java class for the named iterator, called
CustomerList, which contains the following methods:

0 boolean next()—allows you to fetch the next row of data; returns a true if a
row is found, and a false if there are no more rows.

int id()—returns the customer id as an int, for the current row.
String name() — returns the customer name as a String.
O String surname() — returns the customer surname as a String.

O d

These methods are used to process the query data. The next() method is
common to all named iterators, and the remaining method names depend on the
iterator declaration. One method is created for each column name specified in
the iterator declaration, which returns a value of the data type declared before the
name. The number of columns in the SQL query must be equal to or greater than
the number of names listed in the iterator declaration. Additional columns in the
guery are ignored.

Listing 11.11 shows a method called listCustomers() which uses a modified
form of the CustomerList named iterator to display the customer id, name, and
email address.

01: #sql iterator CustonmerList (int id, String full Naneg,

02:

String email);

03: public void listCustoners() {

04:
05:
06:
07:
08:
09:
10:
11:

Cust oner Li st custLi st;

try {
#sqgl custList = { SELECT nane||' '||surnane AS full nane,

email, id
FROM cust oner };

while (custList.next()) {

LISTING 11.11 Display customer details using a named iterator

e

chll.gxd 5/22/01

10: 53 AM Page 545 $

Data Access with SQLJ—Embedding SQL in Java 545
12: Systemout.println("Custoner: " + custList.id() + " " +
13: custList.full Nane() + " " +

14: custList.email ());

15: }

16: custList.close();

17: }

18: catch (Exception e) {

19: e.printStackTrace();

20: }

21: }

LISTING 11.11 Continued

The example in Listing 11.11 highlights some additional points discussed in

the notes. Notes for Listing 11.11:

O

O

Lines 1 and 2 declare a named iterator with a comma-separated list of three
columns, each preceded by a Java data type.

Line 7 executes the query that returns the columns for the iterator object.
The iterator object variable appears after the #sql token, and before an as-
signment operator prior to the braces containing the query. The query can
also be parameterized with host variables. If the query uses a column ex-
pression, then a column alias, with the same name as the corresponding
name in the iterator declaration, must be used. In this example, the query
uses a concatenated expression of values, the f i r st _nan®e, a space, and the
I ast _nane. The column alias must be specified as f ul | nane to match the
second iterator column name in line 1.

Line 11 calls the next() method of the iterator class, as you would with a
JDBC ResultSet to process each row of data.

Lines 12, 13, and 14 print the values returned in each row by calling each of
the named iterator methods for the column values defined.

The Java source code generated for the CustomerList class is shown in List-

ing 11.12.

cl ass CustomerList extends sqglj.runtine.ref.ResultSetlterlnpl

{

i mpl enents sqlj.runtine. Nanedlterator

public CustomerList(sqglj.runtinme.profile. RTResultSet resultSet)
throws java. sql.SQ.Exception

{

LISTING 11.12 Generated Java source for a named iterator

e

chll.gxd 5/22/01

546

10: 53 AM Page 546 $

Chapter 11

super (resul tSet);

i dNdx = findCol um("id");

ful | NameNdx = findCol um("ful | Name");
emai | Ndx = findCol um("email");

}

public int id() throws java.sql.SQ.Exception {
return resul tSet.getlntNoNul | (i dNdx) ;

}

private int idNdx;

public String full Name() throws java.sql.SQException {
return resul tSet.getString(full NanmeNdx) ;

}

private int full NaneNdx;

public String email () throws java.sqgl.SQ.Exception {
return resul tSet.getString(email Ndx) ;

}

private int email Ndx;

LISTING 11.12 Continued

The source code in Listing 11.12 is added to the Java source generated for
the SQLIJ file containing the #sql iterator declaration. The iterator class is subject
to Java scoping rules depending on where it is declared. For example, you can de-
clare an iterator as a standalone class or an inner class. The following example il-
lustrates this point:

package com prenhal | . OFJP. sql j ;

/* SQJ iterator generated as normal class with visibility
defined with "default" access within the package */
#sql iterator Custonerlter (.);

public class OderEntry {
/1 SQ.J iterator declared as an inner class

#sql

iterator CustOrderlter (.);

chll.gxd 5/22/01 10:53 AM Page 547 $

Data Access with SQLJ—Embedding SQL in Java 547

class Oderltem {
/1 SQJ iterator declared as nested inner class
#sql iterator Courierlter (.);

}

public OderEntry(.) { // constructor
}

public void addliten(.) { } [// instance nethod
#sql iterator Saleltemter (.); // generates a conpile tine error

An SQLJ declaration, like these iterators, is invalid inside a method, because
the SQLJ Translator does not allow them to be specified in the body of a method.
The SQLIJ Translator generates an error.

Declaring and Using a Positional Iterator

Declaring a positional iterator is similar to declaring a named iterator, but
with a comma-separated list of Java data types without the names. For example:

#sql iterator CustonerList (int, String, String);

The CustomerList iterator is still considered a strongly typed mechanism.
The names of column names/aliases in a query are irrelevant to a positional itera-
tor, as long as the column data type matches the corresponding iterator column
declaration.

To process rows with a positional iterator, you first execute an SQLJ FETCH
statement, followed by a call to the endFetch() method to test the outcome of the
FETCH operation. The SQLJ Translator generates the following methods for a po-
sitional iterator:

O boolean endFetch()—returns true if the last SQLJ fetch statement executed
returns a row; otherwise, it returns a false.

O getCol<n>() method, where <n> is a number from 1 to the number of col-
umn data types specified in the positional iterator definition. Each method
returns a value of the data type corresponding to its position.

Listing 11.13 shows the code generated by the SQLJ Translator for a positional it-
erator:

chll.gxd 5/22/01 10:53 AM Page 548 $

548 Chapter 11

class Custonerlter extends sqglj.runtinme.ref.ResultSetlterlnpl
i mpl enents sqlj.runtine. Positionedlterator

{
public Customerliter(sqglj.runtinme.profile. RTResultSet result Set)

t hrows java. sql.SQ.Exception
{

}

public int getCol 1() throws java.sql.SQLException {
return resul tSet.getlntNoNull (1);

super (resultSet, 3);

}

public String getCol 2() throws java.sqgl.SQ.Exception {
return resultSet.getString(2);

}

public String getCol 3() throws java.sqgl.SQ.Exception {
return resultSet.getString(3);

}
}

LISTING 11.13 Generated Java source for a positional iterator

The endFetch() method is not shown because it is inherited from the
sglj.runtime.ref.ResultSetlterimpl superclass. While you use the getCol<n>()
methods to obtain the column values for each row, accessing the row data is ac-
complished with the SQLJ FETCH statement. An example showing the syntax for
a FETCH statement is:

package com prenhal | . OFJP. sql j;
#import sqlj.runtinme.*;
#inmport sqglj.runtime.ref.*;

#sql iterator Custonerlter (int id, String nane, String email);
public class Regi sterCustoner {

public void IistCustoners() {
Custonerlter custlter = null;
i nt cust | d;
String cust Nane;
String email;
#sql custlter = { SELECT id, nanme, email FROM custoner };

e

chll.gxd 5/22/01 10:53 AM Page 549 $

Data Access with SQLJ—Embedding SQL in Java 549

try {
while (true) {

#sql { FETCH :custonerlter INTO :custld, :custNane, :email };
if (iter.endFetch()) break;

/'l process data here

}
}
catch (Exceptione) { . . . }
finally { . . .}

}
}

The variable name, like cust oner | t er, appearing after the FETCH key-
word must be of a positional iterator class type. The iterator variable must be pre-
ceded by the colon, as is each of the variables after the INTO keyword. The Java
host variables after the INTO keyword must be present for each position corre-
sponding with the iterator column definition; and each must be of a compatible
data type. Always test whether the fetch operation was successful by executing
the iterator endFetch() method.

Listing 11.14 shows an example of the use of a positional iterator for receiv-
ing some of the customer details from the customer table.

01: #sql iterator Customerlter (int, String, String);

02:

03: public void getCustonerDetails() {

04: try {

05: Customnerlter custList = null;

06: int id = 0;

07: String name = null;

08: String email = null;

09:

10: #sql custList = { SELECT id, nane ||' '|]|surname, enail
11: FROM cust orrer };

12:

13: do {

14: #sql { FETCH :custList INTO :id, :nane, :email };

15: if (custList.endFetch()) break;

16: Systemout.println("Cust: " + id +" "+ nane +" "+ email);
17: }

LISTING 11.14 Using a positional iterator to read customer details

e

chll.gxd 5/22/01

550

18:
19:
20:
21:
22:
23:
24:

#sql

}

10: 53 AM Page 550 $

Chapter 11

while (true);
custList.close();

catch (Exception e) {
e.printStackTrace();

}
}

I I |

O

LISTING 11.14 Continued

Notes for Listing 11.14:

Line 1 declares the positional iterator class.

Line 5 defines the iterator variable.

Lines 6, 7, and 8 define variables for values retrieved from the query.

Line 10 executes the query returning the result set for the positional iterator
object variable custList.

Lines 13-18 comprise the loop to process each row read in for the specified
query.

Line 14 executes the SQL FETCH statement, receiving one column value per
data type position defined in the positional iterator.

Line 15 tests whether the last FETCH operation was successful, and, if not,
the loop is terminated by executing a break statement. Otherwise, the loop
continues to process the data.

11.3.3.3 Closing lterators. lterators, like the JDBC ResultSet, consume

resources, so it is important to close an iterator after processing all the data it re-
turns. Simply call the close() method of the iterator to close it.

11.3.3.4 Reading NULL Values. If any column in the data base table

can contain a NULL, then you should read the column value into a Java object
reference of a compatible type. This applies specifically to values you wish to re-
ceive as a Java primitive type. Primitive types cannot store a Java null value, so
you should use the appropriate Java wrapper. For example:

iterator Denolter (int, String);

public void insertNull () {
try {

}

#sql

{ DROP TABLE deronul | };

catch (Exception e) {}

chll.gxd 5/22/01 10:53 AM Page 551 $

Data Access with SQLJ—Embedding SQL in Java 551

try {
Dermolter denp = null;

#sql { CREATE TABLE denpnul | (id nunber(4), text varchar2(30)) };
#sql { INSERT | NTO denonul |l values (1, 'Does not have nulls') };
#sql { INSERT | NTO denonull values (null, "Has a null') };

#sql { COWMT };

#sql denmp = { SELECT * FROM denonul |l };
do {

int idValue = O;

String textValue = null;

#sql { FETCH :denp INTO :idValue, :textValue };

i f (deno. endFetch()) break;

Systemout.printin("Row. " + idValue + " " + textVal ue);
}
while (true);
deno. cl ose();

}
catch (Exception e) {

e.printStackTrace();
}
}

The exception occurs when fetching the second row, and the message generated
by SQLJ runtime when attempting to read the NULL valued column is;

sqglj.runtinme. SQLNul | Exception: cannot fetch null into
primtive data type

To avoid this problem:

0 Change the iterator definition to read the NULL valued column as a corre-

sponding Java wrapper instead of the primitive type.

Test the object reference value used to receive the value for a null.

O If the Java object reference is null, then the value in the column was a data-
base NULL value; otherwise, you have an object reference to the value that
can be used to convert the value contained in the object into its primitive
value by using the appropriate wrapper class method.

O

The code that shows the suggested changes in bold text is:

chll.gxd 5/22/01

552

10: 53 AM Page 552

—p—

#sql iterator Denolter (Integer,

public void insertNull () {
try {

#sql

}
catch (Exception e) {}

{ DROP TABLE denonul | };

try {
Denolter denp = nul |
#sql {
CREATE TABLE denonul | (
id nunber(4),
b
#sql {
| NSERT | NTO denonul
val ues (1, 'Does not have nu
b
#sql {
| NSERT | NTO denonul
values (null, "Has a null")
b
#sql { COM T };
#sql denpo =
do {
I nteger idValue =
String textValue =

nul | ;
nul | ;

#sql
if (denp.endFetch()) break;
if (idvalue nul 1) {
System out . printl n(" Row:
}
el se {
int idval =
System out . printl n(
"Row. " + idval + " "
}
}
while (true);
deno. cl ose();

}
catch (Exception e) {

e

{ SELECT * FROM denonul

{ FETCH :denop I NTO :idVal ue,

Chapter 11

String);

text varchar2(30))

[s')

b

:text Val ue };

NULL " + textVal ue);

i dval ue. i nt Val ue();

+ textVal ue);

chll.gxd 5/22/01 10:53 AM Page 553 $

Data Access with SQLJ—Embedding SQL in Java 553

e.printStackTrace();

}
}

Two changes were made:

1. The data type of the first column in the iterator definition was changed to an
Integer type.

2. The idValue variable was changed to an Integer object.

If the id column has a non-null value, the JDBC driver creates an Integer ob-
ject for the value; otherwise the object variable, idValue, is assigned a Java null
value, that is, no object is created. You can simply test the object reference for
nul | to detect whether you have read a NULL database value.

11.3.3.5 Advanced Iterators. Inthe definition of an iterator, Oracle SQLJ
allows a data type for acolumn to be a ResultSet or another Iterator. This is useful for
returning result sets from a nested query, such as when retrieving data in a nested
table. In Oracle8i SQL, you can emulate a nested table for related tables by using the
CURSOR operator. The following query is an example of an SQL statement that re-
quires an iterator to be defined as a column data type for its associated iterator:

SELECT id, nane,
CURSOR (select id, cour_id, total cost
FROM cust _order WHERE cust _id = custoner.id) orders
FROM cust omrer
WHERE id = :custonerld;

In the example, the CURSOR operator executes a correlated subquery to re-
turn all order records for a specific customer. The subquery returns more than
one column value and a set of rows, as if it were a nested table.

The named iterator definition to read the customer id, name, and order
rows, using a JDBC ResultSet, is:

/1 Nanmed Iterator
#sql iterator CustOrders (int id, String name, ResultSet orders);

The positional iterator to achieve a similar result is:

/1 Positional I|terator
#sql iterator CustOrders (int, String, ResultSet);

The query column alias, or der s, is applied to the CURSOR query so that you
can use a named iterator. Without the alias applied to the nested cursor query,
you would be forced to use a positional iterator.

Listing 11.15 shows how to process the data in the nested cursor result set.

e

chll.gxd 5/22/01 10:53 AM Page 554 $

554 Chapter 11
01: #sql iterator CustOrders (int id, String nanme, ResultSet orders);
02:

03: public void getOrders(int custonerld) {

04: try {

05: CustOrders custOrders = null;

06:

07: #sql custOrders = { SELECT id, nane,

08: CURSCOR (SELECT id, cour_id, total _cost

09: FROM cust _order

10: WHERE cust _id = custoner.id) orders
11: FROM custonmer WHERE id = :custonerld };

12:

13: while (custOrders.next()) {

14: int id = custOders.id();

15: String name = custOrders. nane();

16: Systemout.printin("Orders for: " +id + " " + nanme);
17: Resul t Set ordData = custOrders. orders();

18: whil e (ordData. next()) {

19: Systemout.println("\t" +

20: ordData.getInt(1) +" " + // order id

21: ordData.getInt(2) + " " + // courier id

22: or dDat a. get Doubl e(3)); /'l total cost

23: }

24: ordDat a. cl ose();

25: }

26: cust Orders. cl ose();

27: }

28: catch (Exception e) {

29: e.printStackTrace();

30: }

31: }

LISTING 11.15 Using a JDBC ResultSet as an iterator column

Notes for Listing 11.15:

O The example assumes that you have imported the j ava. sql package in
addition to the SQLJ packages.

O Line 1 declares a named iterator with the third column data type as a JDBC
ResultSet.

Line 5 creates the object variable for the iterator.

O Lines 7-11 execute the query to return the customer details and the nested
result set of orders for the customer.

O

e

chll.gxd 5/22/01 10:53 AM Page 555 $

Data Access with SQLJ—Embedding SQL in Java 555

O Lines 13-25 are the loop to process the rows returned by the iterator, using
the iterator methods created by the SQLJ Translator.

O Line 17 gets the ResultSet from the third iterator column, which returns zero
or more order rows for the given customer.

O Lines 18-23 loop to read the rows from the nested result set of order data for
the given customer.

O When you compile this example with Oracle JDeveloper, it issues a warning

that using a ResultSet in an iterator is nonportable, because the ability to use
a JDBC result set inside the definition of another iterator is a feature imple-
mented by the Oracle SQLJ Translator.

Instead of using a JDBC ResultSet in the iterator column definition, you can

use another iterator. However, to use an iterator nested as a column data type of
another iterator, the following applies:

O The nested iterator must be publ i ¢ to have the SQLJ Translator create a
public iterator class.
O The iterator should be in a separate SQLJ source file because it is declared as
public.
O The filename containing the iterator definition must be the same name as
the iterator.
For example:

/1 File name: Oders.sql]j
package com prenhal | . OFJP. sql | ;

i mport sqlj.runtine.*;
import sqlj.runtime.ref.*;

#sql public iterator Orders (int ordld,
I nt eger courld,
Doubl e total Cost);

After you have run the SQLJ Translator on the public iterator Or der s,” you

can use the Or der s iterator class name, qualified by its package if required, as
the column type in the iterator definition. For example:

’If building the SQLJ class using JDeveloper, the SQLJ Translator issues a warning that the public iter-
ator class is public and “should be declared in a file named <Iterator>.java.” This cannot be done be-
cause the SQLJ Translator works on the SQLIJ file. You can disable the warning message by clearing
the “Show Warnings” checkbox in the JDeveloper project properties “Compiler” tab.

e

chll.gxd 5/22/01 10:53 AM Page 556 $

556 Chapter 11
/'l Declare the application iterator to use a another public iterator

#sql iterator CustOrders (int id, String nane,
com prenhal I . OFJP.sqlj.Orders orders);

Listing 11.16 shows the code that uses the Or der s iterator nested inside the
Cust Or der s iterator.

File: Oders.sqlj
package com prenhal | . OFJP. sql | ;

i mport sqlj.runtine.*;
import sqlj.runtinme.ref.*;

#sql public iterator Orders (int ordld,
I nteger courld,
Doubl e total Cost);

File: Nestedlterator.sqlj

01: package com prenhal | . OFJP. sql | ;
02:

03: inport java.sql.*;

04: inport sqlj.runtine.*;

05: inport sqlj.runtine.ref.*;

06:

07: #sql iterator CustOrders (int id, String nane, Orders orders);
08:

09: public class Nestedlterator {

10: :

11: public void getOrders(int custonerld) {

12: try {

13: CustOrders custOrders = null;

14

15: #sql custOrders = { SELECT id, nane,

16: CURSOR (SELECT id ordid,

17: cour _id courid,

18: total cost total cost

19: FROM cust _order

20: WHERE cust _id = custoner.id) orders
21: FROM custoner WHERE id = :custonerld };

22:

LISTING 11.16 Using a nested iterator as an iterator column

e

chll.gxd 5/22/01

10: 53 AM Page 557 $

Data Access with SQLJ—Embedding SQL in Java 557
23: while (custOrders.next()) {

24. int id = custOders.id();

25: String nanme = custOrders. nanme();

26:

27: Systemout.println("Custoner: " +id + " " +
28: nane + " has orders:");
29: Orders ordData = custOrders.orders();
30: whil e (ordData. next()) {

31: Systemout.println("\t" +

32: ordData.ordld() + " " +

33: ordData.courld() + " " +

34: ordData.total Cost());

35: }

36: ordDat a. cl ose();

37: }

38: cust Orders. cl ose();

39: }

40: catch (Exception e) {

41: e.printStackTrace();

42: }

43:

44: }

LISTING 11.16 Continued

The code to process the nested iterator data is almost identical in structure

to the code in Listing 11.15. The main difference is the methods you use to extract
the actual data. The methods you use depend on the type of iterator definition
you used; that is, whether it was a named or a positional iterator.

O

Notes on Listing 11.16:

Line 7 declares the third iterator column as an O der s iterator type.

Lines 16-20 are the Oracle8i SQL CURSOR subquery providing the data for
the nested iterator column. The CURSOR subquery is given an alias of or -
der s to match the third iterator column in the Cust Or der s named iterator
inline 7.

Line 21 calls the or der s() method, from the generated Cust O der s class,
which returns an Or der s iterator.

Lines 22-27 print the column values from each row in the Or der s iterator
using the methods generated for that iterator. The Or der s iterator method
names match the alias names for each column in the nested cursor query in
lines 16-20.

chll.gxd 5/22/01

558

10: 53 AM Page 558 $

Chapter 11

11.4 PROCESSING ORACLE SQL OBJECT TYPES

In SQLJ, you can also read and write SQL object types using the host variable
syntax. The Java type declared for host variables receiving an SQL object must be
compatible with the SQL object definition, and is derived from a Java class that
can be manually created.® However, it is usually more productive to use Oracle
JPublisher to generate a custom class from the SQL object definition. This section
discusses how to use Oracle JPublisher to generate the classes for Oracle SQL ob-
ject types, and then shows how to use the generated classes in your SQLJ code to
work with Oracle SQL objects.

11.4.1 USING ORACLE JPUBLISHER

Oracle JPublisher is a Java application that reads an Oracle database object and
generates the source code for a Java class with the structure and functionality rep-
resenting it. Oracle JPublisher can generate Java classes for:

Oracle SQL object types and their methods.

Oracle SQL Reference types.

Oracle varying-array and nested-table collections.

Oracle PL/SQL packages.

Oracle procedures and functions not defined in a PL/SQL package.

I s

This section explains how to work with JPublisher to generate a Java class
for an SQL object type, and how to use the generated Java class either to read an
SQL object into your Java application or to save a Java object into its compatible
SQL object in an object table or column.

11.4.1.1 Using the Oracle JPublisher Command-Line Utility. Oracle
JPublisher is provided as a command-line utility called j pub shipped with the
Oracle8i software. You can find the utility in the ORACLE_HOME/bin directory.
Oracle JPublisher is integrated into Oracle JDeveloper 3.0 or later versions, and
can be invoked in a GUI environment. To use Oracle JPublisher you must include
in your CLASSPATH the ORACLE_HOME/sqlj/lib/translator.zip file and the
JDBC class libraries. The generic syntax of an Oracle JPublisher command line is:

j pub —option=value [-option=value ...]

8Appropriate Java interfaces must be implemented to manually construct a class to read an SQL ob-
ject. This technique was covered in the discussion of SQLData and CustomDatum interfaces in Chap-
ter 10.

e

chll.gxd 5/22/01 10:53 AM Page 559 $

Data Access with SQLJ—Embedding SQL in Java 559

The j pub command is followed by one or more opti on=val ue pairs.
Spaces are not allowed between the minus sign option name, the equals sign, and
the value. The options control the rules that govern the generation of the Java
class. To preserve Java naming conventions, Oracle JPublisher options let you
specify the Java class name generated and its corresponding SQL object type. This
is achieved by using JPublisher command-line options or via options specified in
a properties file. For example:

j pub -user =bookst or e/ bookst ore
—ur | =j dbc: oracl e: thi n: @ocal host: 1521: ORA815
—sql =cust oner _t : Cust oner
- package=com prenhal | . OFJP. j pub

This example generates a Cust orer . j ava class file for the cust oner _t
SQL object in a package called com pr enhal | . OFJP. j pub.

If you use an input file, you can also control the names of the methods gen-
erated in the Java class for each attribute found in the SQL object definition. For
example:

Wth a custoner_t bject type defined as:

CREATE TYPE custoner_t AS OBJECT (
id NUVBER(6) ,
nanme VARCHAR2(30) ,
sur name VARCHAR2(40)

);

Using a properties file called of nyprops.jpub containing:
j pub. user =bookst or e/ bookst or e

j pub. url =jdbc:oracl e:thin: @ocal host: 1521: ORA815

j pub. sqgl =cust omer _t

j pub. package=com prenhal | . OFJP. j pub

j pub.input=transl ate.txt

And the file translate.txt containing:
SQ. custoner _t AS Custoner
TRANSLATE nane AS First Nane,
surnane AS Sur nane

The JPublisher command is:

Jpub —props=mnyprops. | pub

chll.gxd 5/22/01

560

10: 53 AM Page 560

—p—

Chapter 11

The preceding example creates a Cust oner . j ava file with an accessor
method for each attribute. The default accessor method name for the i d attribute
is called getld(). However, the accessor method generated for the namne attribute
is called getFirstName(), as controlled by the input-file commands, as is the
method getSurname() for the sur nane attribute. The input option provides a file
of command-to-control method name generation.

11.4.1.2 JPublisher Command-Line Options. Table 11.2 lists some of
the common JPublisher command-line options and their values. It shows default
values (if applicable) in bold text, and required values in italic text.

The same options can be specified more than once, with the last occurrence
overriding any previous settings on the command line or in the properties file.
Options in the property file are processed as if they were entered on the com-
mand line where the pr ops option is used.

TABLE 11.2 Oracle JPublisher command-line options

OPTION VALUES DESCRIPTION

user <username>/password> Required option to select the user name and
password for the database user who owns the SQL
object type definitions.

url jdbc-url

package

sql

props

methods

input

jdbc:oracle:oci8: @ The URL can be for other JDBC drivers supported
by the vendor. You can use the Oracle thin driver
with JPublisher if you do not have SQL*net/Net8
client software installed on your development
platform.

The Java package name for the generated Java
code. This creates a subdirectory structure based on
the package name in the directory specified by the
“dir” option.

Sets the name Java class for the corresponding SQL
object type.

Specifies the name of the properties file containing
additional JPublisher options.

Package-name

sql-type-name:java-class-name
Filename

all, named, none

Using an input file with the
“named” value allows you to
specify which SQL methods
are mapped, and all others are
ignored. A value of true is a
synonym for all, and false is a
synonym for none.

Filename

Specifies whether the generated Java class contains
wrapper methods for those found in the SQL object
type or PL/SQL package.

Specifies a file name that contains commands
controlling how SQL object types, PL/SQL packages,
and subcomponents are translated.

e

chll.gxd 5/22/01

10: 53 AM Page 561 $

Data Access with SQLJ—Embedding SQL in Java 561

11.4.1.3 Files Generated by JPublisher. The files generated by Oracle
JPublisher depend on how the —sql option is used. For example, if you specify:

j pub —sql =oracl e-type: C assNane .
then JPublisher generates the following files:

O An SQLJor Java file called Cl assNane. sglj or C assNane. java. The
SQLJ file is generated if you specify the —met hods=t r ue command-line
option, otherwise the . j ava file is generated.

O AlJava file called for a G assNaneREF. j ava to work with a database REF
to an SQL object type. This file is only generated when the oracle-type speci-
fies an SQL object type name.

O If the oracle-type is a PL/SQL package name or the keyword TOPLEVEL, you
must also include the —net hods=t r ue option.

The Java data types generated for attributes, method return values, and
method arguments are influenced by the - nappi ng options, or via the four op-
tions: - bui | ti ntypes, -usertypes, -1 obt ypes, and - nunber t ypes. Map-
ping options are mentioned to highlight that you can control the data types gen-
erated for Java variables and methods, but it would be too much of a digression
to discuss them in any detail.

11.4.1.4 Using a Properties File. If you use a properties file specified
in the —pr ops=f i | enane option, each line of the property file specifies a prop-
erty whose name is prefixed with j pub. The option is followed by an equals sign
and the value. For example:

j pub. user =bookst or e/ bookst or e

j pub. sqgl =cust oner _t

j pub. mappi ng=j dbc

j pub. package=com prenhal | . OFJP. | pub
The equivalent command line is:

j pub -user=bookst or e/ bookst ore —sql =cust oner _t - nmappi ng=j dbc
- package=com prenhal | . OFJP. | pub

Options not prefixed with j pub are ignored.

Note

The command line is continued according to the rules of the operating system
or command-line handler.

e

chll.gxd 5/22/01

562

10: 53 AM Page 562 $

Chapter 11

11.4.1.5 Controlling the Generation of Class Names. To control the
names generated in your Java class and for each accessor method created for the
SQL object type attributes, use the - i nput option, which specifies a file name
containing one or more translation statements that control the name generation.

A translation statement begins with the keyword SQL followed by the name
of the database structure to be translated and additional instructions introduced
with the keywords GENERATE, AS, and TRANSLATE.®? The abbreviated syntax
of a translation statement is:

SQL nane [AS java- nane- 2]
[TRANSLATE dat abase- menber - nane AS si npl e-j ava- nane
[, database-nmenber-nane AS sinple-java-nane ...]

The name entered after the SQL keyword can be specified as:

O An SQL object type name or a PL/SQL package name.

O An SQL object type or a PL/SQL package prefixed with a specific database
schema name.

O The keyword TOPLEVEL, which specifies that all PL/SQL procedures and
functions in the current schema are to be translated as methods into the
same Java class. The keyword TOPLEVEL is a reserved word, and can be
prefixed with a database schema name.

For example, if the input file contains:

SQL custoner _t AS Custoner
Cust orer is used as the file and class name generated for the SQL object
type called cust oner _t. The name after the AS keyword is case-sensitive. For
example:

SQ custoner _t AS CustoMER

This would generate a file called Cust oMER. j ava and the class name would ap-
pear as follows:

public class CustoMER {

}

*The SQL keyword is the preferred command, but can be replaced with the keyword TYPE. However,
the TYPE keyword may be deprecated in future versions of Oracle JPublisher.

e

chll.gxd 5/22/01 10:53 AM Page 563 $

Data Access with SQLJ—Embedding SQL in Java 563

Therefore, you must take care with the case of characters entered for the
Java class name.

11.4.1.6 Controlling the Generation of Method Names. The TRANS-

LATE command in the input file specifies how to convert attributes in the SQL

object type into Java accessor method names. Oracle JPublisher creates a get and

set method for each attribute found in the SQL object type definition. The “get”

and “set” keywords, in lowercase, are prefixed to a Java method name specified

TRANSLATE command. For example:
SQ. custoner _ot AS Customer

TRANSLATE nane AS Fir st Nane,
surname AS Sur nane

The Java class file generated is called Customer.java, and contains methods
with the signatures shown in the following code snippet:

public class Custoner {

public void setFirstName(String FirstNane) throws SQLException {

}

public String getFirstName() throws SQ.Exception {

}

public void setSurnane(String Surnanme) throws SQ.Exception {

}

public String getSurname() throws SQLException {

}

Note that the argument names preserve the case of the java attribute names
specified in the TRANSLATE command option.

11.4.1.7 Using the Command Line to Control Class Name Generation.

The —sql option is a shortcut alternative to the - i nput option for controlling the
generation of a class name. The —sql option can be specified as:

e

chll.gxd 5/22/01

564

10: 53 AM Page 564 $

Chapter 11
-sqgl =t ype- nane

This creates a Java class with the same name as the type name. However,
underscore characters in the type-name are excluded from the resulting Java class
name, and each word is capitalized. For example:

j pub —sql =cust oner _t

This creates two Java class files named CustomerT.java, and CustomerTRef.
java.

Alternatively, you can use the —sql option to name the Java class as fol-
lows:

-sqgl =t ype- nane: Javacl ass

This creates a Java class of the name you specify. The Java class names if en-
tered are case-sensitive, but the database type-name is not case-sensitive. More
than one t ype- nane: j ava- cl ass combination can be entered, separated by
commas and without spaces. For example:

j pub —sql =cust order _t: Custonmer Order, courier_t: Courier
This JPublisher command will generate four Java source files:

O CustomerOrder.java and CustomerOrderRef.java for the cust oner _t SQL
object type.

O Courier.java file and CourierRef.java for the cour i er _t SQL object type.

11.4.2 USING THE CLASSES GENERATED BY JPUBLISHER

The SQLJ or Java class files generated by JPublisher can be used in your SQLJ or
JDBC code. The examples in this chapter focus on using the generated classes in
SQLJ. If you want to use them in JDBC, follow the examples in Chapter 10 2,
which discusses using the SQLData and CustomDatum interfaces for object
types. The examples in SQLJ are based on an SQL object type called cus-
tomer _t.The cust oner _t object type definition is:

01: CREATE TYPE customer_t AS OBJECT (

02:
03:
04:
05:
06:
07:

| D NUVBER(6) ,
NAVE VARCHAR2(30) ,
SURNANE VARCHAR2(30) ,
EMAI L VARCHAR2(50) ,
PASSWORD VARCHAR2(10) ,
CREDI T_CARD_TYPE VARCHAR2(10) ,

e

chll.gxd 5/22/01 10:53 AM Page 565 $

Data Access with SQLJ—Embedding SQL in Java 565
08: CREDI T_CARD_NUMBER VARCHAR2(20) ,

09: MONTH_EXPI RED VARCHAR2(2) ,

10: YEAR_EXPI RED VARCHAR2(2)

11:);

12:

13: -- Create (bject Table

14: create table customer of custoner t;

15:

16: // Create Relational Table with Object Col um
17: create table best cust (

18: I D NUVBER(4) CONSTRAI NT best _cust_pk PRI MARY KEY,
19: CUST CUSTOVER_ T

20:);

21:

22: /] Create Relational Table with REF to Object
23: create table reg_cust (

24: I D NUMBER(4) CONSTRAI NT reg_cust_pk PRI MARY KEY,
25: CUSTREF REF CUSTOVER T
26:);

O Line 14 creates an object table of customers

O Lines 17-20 create the BEST_CUST table, which is used for reading or up-
dating an object column.

O Lines 23-26 create the REG_CUST, which is used for inserting and reading a
SQL reference to an object column.

The Oracle JPublisher command line used to generate the Customer.java and
CustomerRef.java file is:

01: jpub -sql =customer _t: Custoner
02: -url =j dbc: oracl e: thi n: @ocal host: 1521: ORA815
03: - user =obook/ obook

The j pub command and options have been shown on three lines for clarity, but it
should all be entered on one line. This JPublisher command creates two files:

1. Customer.java (see Listing 11.17)*
2. CustomerRef java (see Listing 11.18)

©The file is called Customer.sqlj if you invoke JPublisher from JDeveloper.

chll.gxd 5/22/01 10:53 AM Page 566 $

566 Chapter 11

The generated Customer.java file uses the CustomDatum and Custom-
DatumFactory interfaces, making the code not portable to other database envi-
ronments.

01: public class Custoner

02: i mpl enents CustonDatum Cust onDat unfact ory

03: {

04: public static final String _SQ_NAME = "OBOOK. CUSTOVER T";
05: public static final int _SQ_TYPECODE = O acl eTypes. STRUCT;

06:

07: /* constructors */

08: public Custoner() { ... }

09: publ i c Custoner (Connecti onContext c)
10: throws SQ.Exception { ... }

11: publ i c Custoner (Connection c)

12: throws SQ.Exception { ... }

13:

14: /* CustomDatuminterface */

15: public Datum toDat um(Oracl eConnection c)

16: throws SQLException { ... }

17:

18: /* CustonDatunfFactory interface */

19: public CustonDatum create(Datumd, int sql Type)

20: throws SQException { ... }

21:

22: /* shal |l ow copy nethod: give object sane attributes as args */
23: voi d shal | onCopy(Custoner d) throws SQ.Exception {

24 _struct = d._struct;

25: }

26:

27: /* accessor nethods */

28: public BigDecinmal getld() throws SQLException

29: { return (BigDecimal) _struct.getAttribute(0); }

30:

31: public void setld(BigDecimal id) throws SQ.Exception
32: { _struct.setAttribute(0, id); }

33:

34: public String getName() throws SQ.Exception

35: { return (String) _struct.getAttribute(l); }

36:

37: public void setNane(String nane) throws SQ.Exception
38: { _struct.setAttribute(l, nane); }

39:

40: /1 other accessor nethods ...

41: }

LISTING 11.17 JPublisher-generated Customer.java class

e

chll.gxd 5/22/01

10: 53 AM Page 567 $

Data Access with SQLJ—Embedding SQL in Java 567

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

public
i mpl enents CustonDatum Cust onDat unfact ory

{

For brevity, most of the generated code for the Customer.java source has

been omitted, such as imports and method bodies. Some of the method signa-
tures have been kept, to highlight the class structure.

Notes on Listing 11.17:

Line 5 identifies the Java object as being an OracleTypes.STRUCT for the
JDBC layer to manage the type mapping.

Lines 8-12 are the constructors for the class; the no-argument constructor
must be present.

Lines 14-16 show the implementation of the CustomDatum.toDatum()
method.

Lines 18-20 implement the CustomDatumFactory.create() method to instan-
tiate a Customer object.

Lines 27-41 are the class getter and setter methods, which manage the state
of each Customer instance.

The Customer.java class should be compiled first, because it is referenced in the
CustomerRef.java class.

java. sqgl . SQLExcepti on;

oracl e.jdbc.driver. O acl eConnecti on;
oracl e.jdbc. driver. O acl eTypes;
oracl e. sqgl . Cust onDat um

oracl e. sql . Cust onDat unfact ory;

oracl e. sql . Dat um

oracl e. sql . REF;

oracl e. sql . STRUCT;

cl ass Cust oner Ref

public static final String _SQ._BASETYPE = "OBOOK. CUSTOVER T";
public static final int _SQ._TYPECODE = O acl eTypes. REF;

REF _ref;

static final

Cust oner Ref _Cust omer Ref Factory = new Cust oner Ref () ;

public static CustonDatunfFactory getFactory() {

}

return _Customer Ref Factory;

LISTING 11.18 JPublisher-generated CustomerRef.java class

e

chll.gxd 5/22/01

568

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41
42:
43:.
44.
45:;
46:
47:
48:
49:
50:
51: }

10: 53 AM Page 568 $

Chapter 11

public CustonmerRef() { // constructor

}

/* CustonDatuminterface */
public Datum toDatum(Oracl eConnection c)
throws SQLException {
return _ref;

}

/* CustonDatunfFactory interface */
public CustonDatum create(Datumd, int sql Type)
throws SQ.Exception {
if (d ==null) return null;
Cust oner Ref r = new Cust oner Ref () ;
r._ ref = (REF) d;
return r;

}

public Customer getValue() throws SQLException {
return (Custoner) Custoner.getFactory().create(
(Datum) _ref.getValue(), OracleTypes. REF);

}

public void setValue(Custoner c) throws SQ.Exception {
_ref.setVal ue((STRUCT) c.toDatun(_ref.getConnection()));

}

LISTING 11.18 Continued

The CustomerRef class provides Java developers with a way to work with
SQL object type REF values.
Notes on Listing 11.18:

O Line 14 identifies the object instance as an OracleTypes.REF for the JDBC
layer type mapping.

O Line 29 implements the toDatum() method for the CustomDatum, and line

35 implements the create() method for the CustomDatumFactory interface.

Lines 43-46 show the getValue() method, which you can use to obtain an in-

stance of the Customer via the CustomerRef object.

O Lines 48-50 show the setVValue() method, which provides you with a means
to write a reference to a Customer object previously obtained from the data-
base.

O

chll.gxd 5/22/01 10:53 AM Page 569 $

Data Access with SQLJ—Embedding SQL in Java 569

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Listings 11.17 and 11.18 provide you with a quick look under the hood at
the classes generated by JPublisher. The JPublisher tools save a great deal of cod-
ing effort, and eliminate an error-prone manual process, to create custom classes
for Oracle SQL object types and an object type REF.

11.4.2.1 Selecting Oracle SQL Objects in SQLJ. To select an SQL ob-
ject into your Java application, you create an SQLJ SELECT statement to retrieve
the data from an object table or column, and store the SQL object value in a Java
variable declared with the class name generated by JPublisher for the corre-
sponding SQL object type.

Listing 11.19 shows an example that queries all customer instances from an
object table, using a named SQLJ iterator.

package com prenhal | . OFJP. sql j ;
i mport sqlj.runtine.*;
i mport sqlj.runtine.ref.*;
i mport java. mat h. Bi gDeci nal ;
public class ManageCustoner {
publ i c ManageCustomer(String url) { ... }

#sqgl iterator List(Custonmer cust);

public void IistCustoners() {
Li st cust oners;

try {
#sql customers = { select value(c) cust fromcustomer c };

whil e (custoners.next()) {
Custoner theCust = customers.cust();

Systemout.println(theCust.getld() + " " +
theCust.getNanme() + " " +
t heCust . get Surnane());
}
custoners. cl ose();

}
catch (Exception e) {

e.printStackTrace();
}

LISTING 11.19 Selecting an SQL object from an object table

e

chll.gxd 5/22/01

570

10: 53 AM Page 570 $

Chapter 11
Notes for listing 11.19:

Line 9 is the skeleton for the ManageCustomer constructor. The default con-
nection context is initialized in the constructor.

Line 11 defines a named iterator called Li st, which defines the column
data type as Cust onmrer and name as cust .

Line 14 declares a local iterator variable called cust oner s.

Line 17 executes the SELECT statement to read the customer object in-
stances from the table, and returns the result set to the cust oner s iterator.

Line 19 obtains the Customer object instance from the iterator cust()
method.

Lines 20-22 call some of the getter methods generated by JPublisher to dis-
play some of the customer details.™

Listing 11.20 shows how to use a positional iterator to fetch a specific cus-

tomer instance from the object table.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14.
15:
16:
17:
18:
19:

package com prenhal | . OFJP. sql j ;

i mport sqlj.runtine.*;
i mport sqlj.runtime.ref.*;
i mport java. mat h. Bi gDeci mal ;

public class ManageCustomer {
public ManageCustoner(String url) { ... }
#sql iterator PList(Customner);
public void getCustoner(int id) {

PLi st iter;
Custonmer ¢ = null;

try {
#sql iter = { select value(c)
from custoner c

LISTING 11.20 Reading an Object Type using a positional iterator

In addition to accessor methods, JPublisher can also generate Java wrapper methods for each mem-
ber method in the SQL object type definition if you use the JPublisher —net hods command-line op-

tion.

e

chll.gxd 5/22/01 10:53 AM Page 571 $

Data Access with SQLJ—Embedding SQL in Java 571
20: where c.id = :id };
21: #sql { fetch :iter into :c };
22: if (liter.endFetch()) {
23: Systemout.println(c.getld() + " " +
24. c.getNane() + " " +
25: c. get Surname());
26: }
27: el se {
28: System out . printl n(
29: "Customer with " +id + " does not exist");
30: }
31: }
32: catch (Exception e) {
33: e.printStackTrace();
34: }
35: }
36: }

LISTING 11.20 Continued

Notes on Listing 11.20:

O

Line 11 declares the positional iterator class called PList.

O Line 18 assigns the result set from the select statement to the iterator vari-
able, declared in line 14.

O Line 21 fetches an SQL CUSTOMER _T obiject into the Java object reference
for a Customer.

O Lines 23-25 call the getter methods from the Customer class to display some
of the attribute values.

The SQLJ code for retrieving the SQL object is quite simple, because the
complexity of converting an Oracle SQL object type into a Java object is managed
by the code generated by Oracle JPublisher.

11.4.2.2 Inserting, Updating, and Deleting an Oracle SQL Object. In-
serting or updating an SQL object with a new Java object instance data is a three-
step process:

1. Instantiate the Java object from the class generated by JPublisher.
2. Call the various set methods in the object to set the attributes.
3. Bind the object reference variable in an SQLJ insert or update statement.

chll.gxd 5/22/01 10:53 AM Page 572 $

572 Chapter 11

Listing 11.21 is an example of creating a customer object, calling the setter
methods to define the object state, and then inserting the data into an SQL object
instance in an object table. The example also shows how to insert an object into an
object column in a relational table.

01: package com prenhal | . OFJP. sql j;
02:

03: inport sqlj.runtine.*;

04: inport sqlj.runtine.ref.*;

05: inport java.nath. Bi gDeci nmal ;

06:

07: public class ManageCustoner {

08:

09: publ i c ManageCustoner(String url) { ... }

10:

11: public void addCustoner(int id, String nane,

12: String surname, String cardNunmber) {
13: try {

14: Custonmer ¢ = new Customer();

15: c.setld(new Bi gDecinal (id));

16: c. set Nane(nane) ;

17: c. set Sur nane(sur nane) ;

18: String email = name.substring(l,?2).toUpperCase() +
19: "." 4 surnane + "@zenmnil.comau";
20: c.setEmail (email);

21: c. set Passwor d("wel corme") ;

22: c.setCreditCardType(" AMEX") ;

23: c. set Credi t Car dNunber (car dNunber) ;

24. c. set Mont hExpi red("02");

25: c. set Year Expi red("02");

26:

27: #sql { insert into custoner values (:c) };

28: #sql { insert into best_cust values (:id, :c) };
29:

30: #sql { commit };

31: }

32: catch (Exception e) {

33: e.printStackTrace();

34: }

35: }

36: }

LISTING 11.21 Inserting Java objects into an object table or column

chll.gxd 5/22/01 10:53 AM Page 573 $

Data Access with SQLJ—Embedding SQL in Java 573

This example is somewhat contrived and explicit to show the creation of a
Customer object and the operations necessary to INSERT it into an object table
and an object column. The code could be written to receive a reference to Cus-
tomer object, which would be created by the caller of the addCustomer() method.
The addCustomer() method signature would then be:

public void addCust oner (Cust omer newCustoner) { . . . }

Notes on Listing 11.21:

O

Line 14 instantiates the Customer object using its no-argument constructor.

O Lines 15-25 call the set accessor methods of the Customer class to set the
state of the customer object.

Line 27 inserts the object into the customer object table.
O Line 28 inserts the object into an object column of a relational table.

O

The INSERT statement adding the object into the object table could be writ-
ten in two other ways. With one, you insert the data using standard SQL INSERT
syntax:

#sql { insert into custoner (id, nane, surnane, emnail
password, credit_card_type, credit_card_nunber,
nont h_expi red, year_expired)

val ues (
s(c.getld()),
:(c.getName()),
:(c.get Surnane()),
c(c.getEmail ()),
:(c.getPassword()),
:(c.getCreditCardType()),
:(c.get CreditCardNunber()),
s (c.get Mont hExpired()),
2 (c.get Year Expired())

)

b

Alternatively, you can insert the data using the SQL object type constructor:

#sql { insert into custoner values (
CUSTOMER T(: (c.getld()),
s (c.getName()),
:(c.get Surnane()),
:(c.getEmail ()),

e

chll.gxd 5/22/01

574

10: 53 AM Page 574 $

Chapter 11

. get Password()),
.getCreditCardType()),

. get Credit CardNunber ()),
. get Mont hExpired()),

c. get Year Expi red())

}s

The preceding examples show that, instead of obtaining the SQL statement

values from a Java variable, you can place a colon before a host expression en-
closed between brackets. In these examples, each host expression calls a Java
method to return a result. The result is supplied as the value for the target
columns in the SQL statement. In the example, all SQL attributes values are ob-
tained directly from the Customer object in the Java code.

Listing 11.22 provides an example of executing an SQL UPDATE statement

on an object column in the SQLJ application.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

package com prenhal | . OFJP. sql | ;

i mport sqlj.runtine.*;
import sqlj.runtinme.ref.*;
i mport java. mat h. Bi gDeci nmal ;

public class ManageCustomer {
public ManageCustoner(String url) { ... }

public void changeCustoner(int id) {
try {
Custonmer aCust = new Custoner();
aCust . set | d(new Bi gDeci nal (98));
aCust . set Name(" Xak") ;
aCust . set Surnanme("ldran");
aCust.setEmail ("Z. ldran@m | .com za");
aCust . set Passwor d("wel ko) ;
aCust.set CreditCardType(" VI SA");
aCust . set Credi t Car dNunber (" 2230414134093333") ;
aCust . set Mont hExpi red("12");
aCust . set Year Expi red("01");

#sql { update best cust

LISTING 11.22 Updating an SQL object in an object column

e

chll.gxd 5/22/01 10:53 AM Page 575 $

Data Access with SQLJ—Embedding SQL in Java 575
25: set cust = :aCust where id = :id };
26:
27: #sql { commt };
28: }
29: catch (Exception e) {
30: e.printStackTrace();
31: }
32: }
33: }

LISTING 11.22 Continued

Notes on Listing 11.22:

O Lines 13-22 instantiate the object and set the state of each instance variable
by calling the Customer setter methods.

O Lines 24 and 25 show the update statement used to change the object in-
stance in the cust column of the best cust table for a specified customer
id. The original instance in the cust column is overwritten by the new in-
stance.

You cannot use an UPDATE statement to replace an entire object instance in
an object table. However, you can modify the attribute values of an existing ob-
ject instance by using a standard SQL UPDATE statement.

You can delete an object instance by executing any DELETE statement with
a condition to target the specific instance. To remove an object instance from an
object column, you set the column to a NULL using an UPDATE statement, pro-
vided the object column allows a NULL value. For example:

package com prenhal | . OFJP. sql | ;
i mport sqlj.runtine.*;
import sqlj.runtinme.ref.*;

i mport java. mat h. Bi gDeci nmal ;

public class ManageCustoner {

public ManageCustoner(String url) { ... }
public void renoveCustoner(int id) {
try {
#sql { update best cust

set cust = NULL where id = :id };

e

chll.gxd 5/22/01

576

10: 53 AM Page 576 $

Chapter 11

#sql { commt };
}
catch (Exception e) {
e.printStackTrace();
}
}
}

11.4.2.3 Extending Classes Generated by JPublisher. The best way
to modify the classes generated by JPublisher is to create a subclass of the gener-
ated class, and add additional constructors, attributes, and methods to it. The less
attractive alternative is to directly modify the generated class. This risks loss of
code if you need to regenerate the Java class, due to changes made to the associ-
ated SQL object type.

If you create a subclass from the Java class generated by Oracle JPublisher,
and subsequently modify the base object type, you must use the Oracle JPub-
lisher input file with the GENERATE AS syntax for the translator command. For
example, if the properties file myprops.jpub contains:

j pub. user =bookst or e/ bookst or e
j pub. url =jdbc:oracl e:thin: @ocal host: 1521: ORA815

where the translate.txt file contains:

SQL custoner _t
GENERATE Cust orrer | npl
AS MyCust oner

you can use the following Oracle JPublisher command line:
j pub —props=nyprops.jpub —input=transl ate.txt

This example creates two Java files, Customerlmpl.java and Customer-
ImplRef.java. However, Oracle JPublisher does not generate the file called My-
Customer.java. MyCustomer is added to the translator command after the key-
word AS, when using the GENERATE keyword, to prevent JPublisher from
creating MyCustomer.java file. Use this technique if you have manually created
MyCustomer.java as a subclass of Customerlmpl.java and want to preserve the
extension you have made. You can safely regenerate the CustomerIlmpl class and
inherit the appropriate changes.

The shortcut Oracle JPublisher command to perform the same task, using
the properties file and not the input translator file, is:

chll.gxd 5/22/01

10: 53 AM Page 577 $

Data Access with SQLJ—Embedding SQL in Java 577

j pub -props=pl.jpub -sqgl =custoner _t: Customrer| npl : MyCust oner

11.4.2.4 Compile and Runtime SQL Checks. Itis usually a good idea
to invoke translation-time SQL syntax and validity checks. The compile-time SQL
checking is achieved with the SQLJ command line, by providing:

O A username and password with the —user option.
0 A database connection string using the - ur | option.

However, testing done with the SQLJ Translator shows that if a value as-
signed to an instance variable in the Java object is too large for the precision of the
associated attribute defined in the SQL object type, then a runtime exception
would be thrown.*? Since the SQLJ translation-syntax checking cannot detect the
attribute size and bound problems that may occur at runtime, particularly with
String data types, you should add the necessary data-validation code before you
execute the SQL statement.

11.4.2.5 Using the Java Class for an Object Type REF. As previously
stated, for each SQL object type generated by the Oracle JPublisher utility, you
get a Java class representing the object REF for the object type. Listing 11.23
demonstrates how you can query and use an object REF type.

01: package com prenhal | . OFJP. sql | ;
02:

03: inport sqlj.runtine.*;

04: inport sqlj.runtine.ref.*;

05: inport java. nmath. Bi gDeci nal ;

06:

07: public class ManageCustoner {

08:

09: public ManageCustoner(String url) { ... }
10:

11: public void getCustFronRef (int id) {

12: try {

13: Cust ormer Ref aCustRef = null;

14: Customer ¢ = null;

15:

LISTING 11.23 Querying an object type REF column

2The tests were done with the SQLJ Translator shipped with JDeveloper 3.0.

e

chll.gxd 5/22/01

578

10: 53 AM Page 578 $

Chapter 11
16: #sql { select ref(c) into :aCustRef
17: from custoner c
18: where "ID'" = :id };
19:
20: c = aCust Ref. getVal ue();
21: Systemout.printin(c.getld() + " " +
22: c.getNane() + " " +
23: c. get Surnanme());
24:
25: #sql { insert into reg cust (id, cust_ref)
26: values (:id, :aCustRef) };
27:
28: #sql { commt };
29: }
30: catch (Exception e) {
31: e.printStackTrace();
32: }
33: }
34: }

LISTING 11.23 Continued

Notes on Listing 11.23:

Line 13 declares the Java variable for the REF of a Customer object.

Line 14 creates the variable for the Customer object referenced by the Cus-
tomerRef object.

Lines 16-18 execute the Oracle select statement to read an object type REF
value into the CustomerRef object. The i d column is quoted in uppercase to
work around a problem with using JDeveloper 3.0 code editor.

Line 20 calls the getValue() method of the Object REF component to acquire
the Customer object instance referenced by the REF value.

Lines 25 and 26 show an insert statement for storing the CustomerRef into a
column cust _ref defined as a REF to the cust ormer _t in the reg_cust
table.

The safest way to insert an Object REF value into a REF column in the database

is to:

O

O

Select the Object REF value into the Java CustomerRef class from a valid
CUSTOMER_T object instance.

Execute an INSERT or UPDATE statement with the CustomerRef object re-
trieved, as shown in Listing 11.23.

e

chll.gxd 5/22/01 10:53 AM Page 579 $

Data Access with SQLJ—Embedding SQL in Java 579

You can see from the simplicity of the examples used that it is very easy to
work with Oracle object types in Java code. There is a natural one-to-one match
between the Java object and the SQL object, and using the JPublisher tool simpli-
fies the process of creating the Java class for an SQL object.

11.5 PROCESSING SQL COLLECTIONS

Oracle varying-array and nested-table object types are collections that can be read
into, and written from, your Java application. The Java classes compatible with
the collection data type definition must first be generated using JPublisher. The
following example uses:

0O A PERSON_T object type, which contains PL/SQL methods.
O A varying-array collection, called PERSON_VA T of PERSON_T objects.
O A nested-table collection, called PERSON_NT_T of PERSON_T objects.

The steps in generating and using these SQL objects in Java are shown in
the following order:

1. Creating the PERSON_T Obiject type, Collections, and tables.
2. Generating the Java classes for PERSON_T object type and collections.
3. Using the object type and collections.

11.5.1 CREATING THE SQL COLLECTIONS AND TABLES

Listing 11.24a shows the SQL code used to create the PERSON_T object type.
Listing 11.24b shows the creation of the PERSON_VA T and PERSON_NT _T col-
lections, as well as the following database tables:

O ATEAM table for a nested table of team members.
O AFAMILY table containing a varying array of members.

CREATE OR REPLACE TYPE person_t AS OBJECT (
id NUMBER(6) ,
firstName VARCHAR2(20),
| ast Nanme VARCHAR2(20) ,
birthDate date,
MEMBER FUNCTI ON get Age RETURN NUMBER,
MEMBER PROCEDURE set Fi r st Nane(newNane VARCHAR?),

Listing 11.24a Creating PERSON_T SQL object and methods

e

chll.gxd 5/22/01 10:53 AM Page 580 $

580 Chapter 11

MEMBER PROCEDURE set Last Nanme(newNane VARCHAR2),
MEMBER PROCEDURE set Bi rt hDat e(newDat e DATE)
VMEMBER FUNCTI ON get Nane RETURN VARCHARZ,

VEMBER FUNCTI ON toString RETURN VARCHAR2

CREATE OR REPLACE TYPE BODY person_t IS
menber function getAge return nunber is
begi n
return round(nonths_between(trunc(sysdate),self.birthDate)/ 12, 2);
end;

menber procedure setFirstName(newNane varchar2) is
begi n

self.firstName : = initcap(newNane);
end;

menber procedure setlLast Nane(newNane varchar2) is
begi n

self.lastNanme : = initcap(newNane);
end;

menber procedure setBirthbDate(newbDate date) is
begi n

self.birthDate : = trunc(newbDate);
end;

menber function getName return varchar2 is
begi n

return firstName||' '|]| ast Naneg;
end;

menber function toString return varchar2 is
begi n

returnid ||': "||self.getNanme||' ('||self.getAge||")";
end;

END;
/

Listing 11.24a Continued

chll.gxd 5/22/01

10: 53 AM Page 581 $

Data Access with SQLJ—Embedding SQL in Java 581

/

/

Listing 11.24a shows a simple object type structure that contains several

methods to operate on the object instance in application memory, whether a
PL/SQL application or a Java application. The methods defined for the PER-
SON_T object are:

O

O d

Function get Age returns the current age of the person. The age is deter-
mined by calculating the months between the person’s birth date and the
current date and time,*® and dividing the value by twelve using Oracle data
arithmetic.

Procedure set Fi r st Nane changes the first-name attribute of the SQL ob-
ject.

Procedure set Last Nane changes the last-name attribute of a person object.
Procedure set Bi rt hDat e changes the birth date in the object.

Function get Nane returns the concatenated result of the person’s first and
last names.

Functiont oSt r i ng returns a concatenated string representation of the per-
son object attributes.

The method names have been entered using Java naming conventions, but

the Oracle database treats each name in a case-insensitive way. Note that the
names are stored in uppercase form in the Oracle data dictionary. The method
names chosen minimized the need to specify an input file with the Oracle JPub-
lisher command line that was used to create the corresponding Java class. The
method names defined in the type body are called through wrapper methods in
the Java class generated by JPublisher by specifying the —net hods command-
line option.

The SQL statements used to create the varying-array, nested-table, and

database tables based on these types are shown in Listing 11.24b.

Create the nested table type definition
CREATE TYPE person_nt _t AS TABLE OF person_t;

Create the varying array type definition
CREATE TYPE person_va_t AS VARRAY(5) OF person_t;

Create the famly table using the varying array for nenbers

LISTING 11.24b Creating SQL collections and tables for PERSON_T

3The Oracle SQL date functions do not provide a function to determine the years between two dates.

e

chll.gxd 5/22/01 10:53 AM Page 582 $

582 Chapter 11

CREATE TABLE FAM LY (
| D NUVBER(4) CONSTRAI NT fanily pk PRI MARY KEY,
MEMBERS PERSON VA T

);

-- Create the teamtable using the nested table for menbers
CREATE TABLE TEAM (
id NUMBER(4) CONSTRAI NT team pk PRI MARY KEY,
nmenber s PERSON_NT_T)
NESTED TABLE nenbers STORE AS TEAM MEMBERS;

LISTING 11.24b Continued

Having created the SQL types and tables using Oracle JPublisher either as a
standalone command-line tool or invoked through JDeveloper, you create Java
classes for the object types you wish to work with in your Java applications.

11.5.2 GENERATING JAVA CLASSES FOR SQL COLLECTIONS

Listing 11.25 shows the JPublisher command line and input file used to generate
the Java classes for the PERSON_T, PERSON_VA T object types. A Java class for
PERSON_NT _T also needs to be created for manipulation of the data in a nested
table. Section 11.5.3, “Accessing the SQL Collections from Java,” gives an exam-
ple of using the generated collection classes.

01: jpub -sqgl =person_t: Person, person_va_t: PersonArray
02: -url =j dbc: oracl e: thi n: @ocal host: 1521: ORA815
03: - user =bookst or e/ bookst ore

LISTING 11.25 Generating the Collection Java class with JPublisher

Notes on Listing 11.25:
The entire command line is entered on one line, but is split into three lines
for presentation here.

O Line 1 converts the PERSON_T into a Person.java, and PERSON_VA T into
PersonArray, which creates methods to manage a collection of Person ob-
jects.

O Lines 2 and 3 are database connection details to locate the definitions of the
SQL object types.

JPublisher generates the following Java sources:

e

chll.gxd 5/22/01 10:53 AM Page 583 $

Data Access with SQLJ—Embedding SQL in Java

O d

Person.java is the Java class for the PERSON_T object.
PersonRef.java is the Java class for a REF to a PERSON_T object.

O PersonArray.java is a collection of Person objects.

If the command line in Listing 11.25 had included the “~methods=true” op-
tion, a Person.sqlj file would be generated instead of the Person.java file. In addi-
tion, the Person.sqlj file would include Java wrapper methods for each method
defined in the PERSON_T object type. The names generated for wrapper meth-
ods can be changed by using an SQLJ Translator input file with appropriate

TRANSLATE commands.

The generated wrapper methods invoke the SQL object methods by execut-
ing a PL/SQL anonymous block in a SQLJ statement. However, now focus on
how you can use the generated classes to perform SQLJ operations from Java on
the collections. Listing 11.26 shows the resulting method signatures for the Per-

sonArray.java source that can be used to manage a collection of objects.

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

public class PersonArray

{

}

i mpl enents CustonDatum Cust onDat unfact ory

public static CustonDatunfactory getFactory();
public PersonArray();
public PersonArray(Person[] a);

/* CustonDatuminterface */

publ i c Datum t oDat un(Or acl eConnection c) ..

/* CustonDatunfactory interface */

public CustonDatum create(Datumd, int sql Type)

public int |ength();

public int getBaseType();

public String getBaseTypeNane();

public ArrayDescriptor getDescriptor();

/* array accessor nethods */
public Person[] getArray();

public void setArray(Person[] a);

public Person[] getArray(long index, int count);
public void setArray(Person[] a, |ong index);
public Person getEl ement(long index);

public void setEl enent(Person a, |ong index);

LISTING 11.26 Java object method signatures for the SQL collection

e

583

ey

chll.gxd 5/22/01 10:53 AM Page 584 $

584 Chapter 11
Notes on Listing 11.26:

O Lines 4- 6 are the methods used to construct the array object.

O Lines 8-11 are the methods required because of the implementing of the
CustomDatum and CustomeDatumFactory interfaces.

O Lines 13-24 are methods for accessing information about the collection, in-
cluding getting a specific Person element and adding new Person elements.

The collection can be read and written using SQLJ statements, and the
above methods are useful for constructing and using the collection in your appli-
cation.

11.5.3 ACCESSING THE SQL COLLECTIONS FROM JAVA

The example in Listing 11.27 shows how to construct a Java array of Person ob-
jects and add it to a PersonArray object, which, in turn, is inserted as a new
record into the family table (see Listing 11.24b), and then shows how to read the
contents of the family table.

01: inport sqlj.runtine.*;
02: inport sqlj.runtine.ref.*;

03:

04: public class VarArrayExanpl e {

05:

06: #sql iterator Families (int id, PersonArray nmenbers);

07:

08: public VarArrayExanpl e() {

09: Def aul t Context ctx = null;

10: Fam lies famly = null; /1 declare iterator variable
11: String driver = "jdbc:oracle:thin:";

12: try {

13: Cl ass.forName("oracl e.jdbc.driver.Oacl ebriver");

14: ctx = new Def aul t Cont ext (

15: driver + "bookstore/bookstore@ ocal host: 1521: CRA815",
16: fal se);

17: Def aul t Cont ext . set Def aul t Cont ext (ct x) ;

18:

19: String[] firstNanes = { "Jackie", "Larry", "Sandra" };
20: String[] lastNames = { "Chandra", "Chandra", "Chandra" };
21: [*

22: ** Construct the array of Person objects built from
23: ** the array of first and | ast nanes. Generate

LISTING 11.27 Accessing SQL varying-array collection in SQLJ

e

chll.gxd 5/22/01 10:53 AM Page 585 $

Data Access with SQLJ—Embedding SQL in Java 585
24: ** a newid for each person, and a date of birth
25: ** pased on the |l oop iteration variable val ue

26: */

27: Person[] menbers = new Person[firstNanmes.|ength];
28: for (int i = 0; i < nenbers.length; i++) {

29: menbers[i] = new Person();

30: menbers[i].setld(new java. mat h. Bi gDeci mal (i +20));
31: menbers[i].setFirstname(firstNanmes[i]);

32: menbers[i]. setLastnane(l ast Nanes[i]);

33: menbers[i].setBirthdate(

34 new j ava.sql . Ti nestanp(72+i, 1+, 10+, 0, 0, 0, 0));
35: }

36:

37: /*

38: ** COnstruct the PersonArray collection fromthe
39: ** array Person objects in the nenber variable
40: */

41. PersonArray aFanmily = new PersonArray(nenbers);
42: /*

43: ** Use an SQLJ Insert to create a new fanmily, assigning
44. ** an unique id for the famly generated from an
45: ** Oracle sequence called fanmly_seq.

46: */

47: #sql { insert into famly (id, nenbers)

48: val ues (famly_seq.nextval, :aFamly) };
49:

50: [*

51: ** Now popul ate the famly iterator with

52: ** gach fam |y record, where the nenbers

53: ** columm is read as a PersonArray object

54: */

55: #sql famly = { select id, nenbers fromfamly };
56: while (family.next()) {

57: PersonArray pa = fam ly. menbers();

58: Systemout.printin("Famly: " + famly.id());
59:

60: for (int j =0; j < pa.length(); j++) {

61: Person p = pa.getEl ement(j);

62: Systemout.println("\t" + p.getld() +" " +
63: p.getFirstname() + " " +
64: p. getLastname() + " " +
65: p.getBirthdate());

66: }

LISTING 11.27 Continued

e

chll.gxd 5/22/01

586

67:
68:
69:
70:
71:
72:
73:
74
75:
76:
77
78:
79:
80:

}

}

10: 53 AM Page 586 $

}

Chapter 11

}

famly. cl ose();
#sql { commit; };
ctx.close();

catch (Exception e) {

}

e.printStackTrace();

public static void main(String[] args) {
new Var ArrayExanpl e();

}

LISTING 11.27 Continued

Notes on Listing 11.27:

Line 6 creates a named iterator class, called Families, which is used to query
the SQL varying-array collection column. The second iterator data type uses
the PersonArray class to receive the SQL collection for the member column
in the FAMILY table.

Line 10 declares the iterator variable called families used for querying the
SQL collection data.

Lines 27-35 create the array of Person objects to be used for the insert opera-
tion.

Line 41 instantiates the PersonArray collection class with elements from the
member array of Person objects. The PersonArray construct accepts an
array of Person objects (see line 6 of Listing 11.26).

Lines 47 and 48 show a simple SQL INSERT statement that accepts the Per-
sonArray collection object referenced by the aFamily variable. This is all
that is required to insert a new collection of varying-array objects.

Line 55 issues the query on the family table and returns the result set to the
“families” iterator variable.

Line 56 is the start of the iterator loop mechanism that calls the next()
method to step through each family record retrieved from the database
table.

Line 57 uses the named iterators members() method to return a PersonAr-
ray object reference to the SQL varying-array collection for a specific family
record.

chll.gxd 5/22/01

10: 53 AM Page 587 $

Data Access with SQLJ—Embedding SQL in Java

587

O Lines 60-66 show an inner loop using the PersonArray length() method to
control the loop. It calls the getElement() method to obtain a reference to
each Person object contained in the PersonArray object, and prints some of

the details of each Person object in the family record.

Listing 11.27 shows how the use of SQLJ and JPublisher technology can sim-

plify accessing and manipulating collections of SQL objects.
Using JPublisher, a class called PersonNestedTable is generated for

the

PERSON_NT_T nested table. Listing 11.28 shows an example using the Person
and PersonNestedTable classes on data contained in the TEAM table, which con-
tains a nested table of PERSON_T objects for the team members (see Listing

11.24b).

01: import sqlj.runtinme.*;

02: inmport sqglj.runtime.ref.*;
03: inport java.io.*;

04: inmport java.util.*;

05: inport java.math.*;

06:

07: public class NestedTabl eExanpl e {

08:
09:
10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

String driver = "jdbc:oracle:thin:";
String url = driver +
"bookst or e/ bookst or e@ ocal host : 1521: ORA815";

#sqgl iterator TeamMenber (int id, PersonNestedTabl e nenbers);

publ i c NestedTabl eExanpl e(int team d, String fileName) {
Def aul t Context ctx = null;
Teamvenber team = null;

try {
Cl ass. forName("oracle.jdbc.driver. O acleDriver");

ctx = new Defaul tContext(url, false);
Def aul t Cont ext . set Def aul t Cont ext (ct x) ;

Vect or nenberlList = readMenbers(fil eName);
Per sonNest edTabl e newlTeam = new Per sonNest edTabl e(

new Person[nenber Li st.size()]);
for (int i =0; i < menberList.size(); i++) {

newTeam set El ement ((Person) nenberList.elenentAt(i), i);

}
LISTING 11.28 Accessing a SQL nested-table collection

e

chll.gxd 5/22/01 10:53 AM Page 588 $

588 Chapter 11
31:

32: #sql { insert into team (id, menbers)

33: val ues (:team d, :newTeam };

34: Systemout. println("New Teaminserted");

35:

36: #sgl team = { select id, nenbers fromteam};
37: while (teamnext()) {

38: Per sonNest edTabl e pa = team nmenbers();

39:

40: Systemout.println("Team " + teamid());

41. for (int j =0; j < pa.length(); j++) {

42: Person p = pa.getEl enment(j);

43: Systemout.println("\t" + p.getld() + " " +
44 p.getFirstname() + " " + p.getLastnane() + " " +
45; p.getBirthdate());

46: }

47: }

48: team cl ose();

49: ctx.close();

50: }

51: catch (Exception e) {

52: e.printStackTrace();

53: }

54: }

LISTING 11.28 Continued

Notes on Listing 11.28:

O Line 13 declares a SQLJ iterator for reading the rows from the TEAM table,
whose second column is a nested table.

Line 17 declares the iterator variable for the query result set.

O Line 24 calls a readMembers() method (see Listing 11.29) to read member
records from a text file to build a vector of members. This step is needed in
order to find out how many elements are needed to size the array of Person
objects instantiated in the argument for the PersonNestedTable constructor
in lines 26 and 27.

O Lines 26 and 27 create the PersonNestedTable collection object, which must
have an array argument whose size is pre-allocated before you can set each
array element to contain a Person object.

O Lines 28-30 copy the Person object references from the vector into the
nested-table collection used in the insert operation.

O

chll.gxd 5/22/01

10: 53 AM Page 589 $

Data Access with SQLJ—Embedding SQL in Java 589

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:

O Lines 32 and 33 execute the SQLJ INSERT statement to add a new TEAM
row with a collection of members.

O Line 36 initiates a query to process the contents of the TEAM table, return-
ing a result set to the team iterator variable (declared in line 17).

Line 38 obtains a reference to a team row nested-collection object.

O Lines 41-46 loop through each of the nested-table elements to print the Per-
son object contents.

O

It is interesting that the SQL varying-array and nested-table collections can
both be read into either a PersonArray or PersonNestedTable object. This is only
possible because the PersonArray and PersonNestedTable classes are structurally
similar with similar method calls. However, you should use classes appropriate
for the related database type.

public Vector readMenmbers (String fileName) throws Exception {
Buf f eredReader br = new Buff er edReader (
new Fi | eReader (fil eNane));
Vect or nenberlLi st = new Vector();
StringTokeni zer st = null;
Person menber = null;
int idx = 0;
String str = null;

while ((str = br.readLine()) !'= null) {
menber = new Person();

st = new StringTokeni zer(str, ":", false);
whil e (st.hasMoreTokens()) {
int id = 0;

try { id = Integer. parselnt(st.nextToken()); }
catch (Exception nfe) { id = 1; }
nmenber . set | d(new Bi gDeci nal (id));
nmenber . set Fi r st nane(st. next Token());
nmenber . set Last nanme(st . next Token());
nmenber . set Bi rt hdat e(
new j ava. sql . Ti mestanp(72+28, 03, id, 0, 0, 0, 0));
nmenber Li st. addEl enent (nrenber) ;
}

i dx++;

LISTING 11.29 Creating a collection of members from a text file

e

chll.gxd 5/22/01

590

81:
82:
83:
84:
85:
86:
87:
88:

}

10: 53 AM Page 590 $

Chapter 11

br.cl ose();
return menber Li st;

}

public static void main(String[] args) {
new Nest edTabl eExanpl e(2, "teanl.txt");

}

LISTING 11.29 Continued

The remaining piece of code for this example is shown in Listing 11.29. It
reads a text file of tokenized member information.

The readMembers() method reads the member data on each line in the file.
Each line in the file has the member id, first name, and last name separated by a
colon. The java.util.StringTokenizer object is used to extract the field values for a
member to build each Person object. The Person objects are added to a Java vec-
tor. The vector is returned to the caller of the readMembers() method as a collec-
tion of Person objects.

11.6 MANAGING LARGE DATA TYPES

In Chapter 10, you learned how to read LONG or large-object LOB columns. In
this section you will look at similar examples using SQLJ. The SQLJ runtime class
library provides three classes for working with large objects:

O AsciiStream—for processing character data in bytes.
O BinaryStream—for processing binary data in bytes.
O UnicodeStream—for processing character data in 16-bit characters.

All of these classes, which are defined in the sqlj.runtime package, are sub-
classes of sqlj.runtime.StreamWrapper. The StreamWrapper class is a subclass of
java.io.FilterInputStream. These classes act as an input source for data inserted
into large columns, or an input source when extracting data from large columns.

The key thing to remember when processing streams associated with data-
base columns is that you must process their contents before you work with another
column, and before you move to the next row. Positional iterators always declare
the stream column last, and are limited to only one stream object per query. Named
iterators do not have this restriction. SQLJ imposes the additional restriction that
you cannot use a stream object in the INTO clause of a SELECT statement. There-
fore, most of the code examples in this section make use of iterators, except for the
examples that operate on the CLOB, BLOB, and BFILE locators.

e

chll.gxd 5/22/01 10:53 AM Page 591 $

Data Access with SQLJ—Embedding SQL in Java 591

The examples that follow show how to use stream classes in SQLJ to read
from, and write to, a database column. The examples are presented as the method
only, which you add to any class.

11.6.1 READING FROM A LONG COLUMN
01: #sql iterator LongAscii (int getld, int getlen,

02: Asci i Stream get Dat a) ;

03: public void readLongAscii (int idvVal) {

04: try {

05: LongAscii iter;

06: #sql iter = { select id getid, len getlen, data getdata
07: from deno_| ong

08: where id = :idval};

09: while (iter.next()) {

10: Systemout.println("Record id: " + iter.getld());
11: byte[] buf = new byte[iter.getlLen()];

12: Ascii Stream aStream = iter.getData();

13: aSt ream read(buf);

14: aStream cl ose();

15: StringBuffer sb = new StringBuffer(buf.length);
16: for (int i = 0; i < buf.length; i++) {

17: sb. append((char)buf[i]);

18: }

19: System out . println(sb);

20: }

21: iter.close();

22: }

23: catch (Exception e) {

24 e.printStackTrace();

25: }

26: }

The key steps in reading text from a LONG column are:

1. Get the column as an AsciiStream object (line 12 gets the stream from the it-
erator column).

2. Read the data from the stream (line 13).
3. Close the stream (line 14).

The remainder of the example adds the byte array to a StringBuffer for
printing on the screen.

chll.gxd 5/22/01 10:53 AM Page 592 $

592 Chapter 11

11.6.2 WRITING TO A LONG COLUMN
01: public void witeLongAscii(int nextld, String filenane) {

02: try {

03: File f = new File(fil ename);

04: if (f.exists()) {

05: int len = (int) f.length();

06: Ascii StreaminData = new Ascii Strean(

07: new Fil el nput Streanm(f), len);
08: #sql { insert into denpb_long (id, len, data)

09: val ues (:nextld, :len, :inData) };

10: i nDat a. cl ose();

11: #sqgl { commit };

12: }

13: el se {

14: Systemout.println("File " + f.getAbsolutePath() +
15: " does not exist");

16: }

17: }

18: catch (Exception e) {

19: e.printStackTrace();

20: }

21: }

Writing a LONG column requires you to associate an input stream with an
AsciiStream object. The example uses a file as the input source and stores the con-
tents of the file in the LONG column.

O Lines 6 and 7 use the AsciiStream constructor with two arguments, the
input stream, and the length of the data. The length is very important for
the example to work. Alternatively, you can construct the stream object
using a new AsciiStream (InputStream), and call the setLength() method to
ensure that the data volume is set before executing the insert statement.

O Lines 8 and 9 perform the insert, and the AsciiStream is processed as a bind
variable.

O Line 10 closes the input stream.

11.6.3 READING FROM A LONG RAW COLUMN
01: #sql iterator LongRaw (int getld, int getlLen,

02: Bi naryStream get Dat a) ;

03: public void readLongRaw(int idVal) ({

04: try {

05: LongRaw i ter;

06: #sql iter = { select id getid, len getlen, data getdata

e

chll.gxd 5/22/01 10:53 AM Page 593 $

Data Access with SQLJ—Embedding SQL in Java 593
07: from deno_| ongraw

08: where id = :idval};

09: while (iter.next()) {

10: int len = (int) iter.getlLen();

11: Systemout.println("Record id: " + iter.getld());
12: Bi naryStream aStream = iter. getData();

13: byte[] buf = new byte[len];

14: aStream read(buf);

15: aStream cl ose();

16: Pi ctureFrame pic = new PictureFrame(buf);

17: pi c. setVisible(true);

18:

19: iter.close();

20: }

21: catch (Exception e) {

22: e.printStackTrace();

23: }

24: }

Reading from a LONG RAW column follows the same steps as reading
from a LONG column. However, in this case, a BinaryStream is used, as shown in
bold. The same PictureFrame class that is described in Chapter 10 is used to dis-
play the image in a Java frame. Here is a sample of what an image would look
like using the PictureFrame class:

chll.gxd 5/22/01 10:53 AM Page 594 $

594 Chapter 11

11.6.4 WRITING TO A LONG RAW COLUMN
01: public void witeLongRaw(int nextld, String filenane) {

02: try {

03: File f = new File(fil ename);

04: if (f.exists()) {

05: int len = (int) f.length();

06:

07: Bi naryStream i nData = new Bi naryStrean(

08: new Fil el nput Stream(f), len);
09: #sql { insert into deno_|ongraw (id, |en, data)
10: val ues (:nextld, :len, :inbData) };

11: i nDat a. cl ose();

12: #sqgl { commit };

13: }

14: el se {

15: Systemout.printin("File " +

16: f.get Absol utePath() + " does not exist");
17: }

18: }

19: catch (Exception e) {

20: e.printStackTrace();

21: }

22: }

Writing a file to a LONG RAW column is similar to writing to a LONG column,
but uses a BinaryStream object, as shown in bold.

11.6.5 READING FROM A CLOB
01: public void readd ob(int idval) ({

02: try {

03: oracl e.sqgl.CLOB theCd ob = null; /1 not portable
04: #sqgl { select cdata into :theC ob

05: fromdeno_cl ob

06: where id = :idval};

07: Buf f er edReader bf = new Buff er edReader (

08: t hed ob. get Character Stream()) ;
09: Systemout.println("Length of data: " + thed ob.length());
10: String s;

11: while ((s = bf.readLine()) !'= null) {

12: System out. println(s);

13: }

14: bf.cl ose();

15: }

16: catch (Exception e) {

e

chll.gxd 5/22/01 10:53 AM Page 595 $

Data Access with SQLJ—Embedding SQL in Java 595
17: e.printStackTrace();

18: }

19: }

Reading from a CLOB column is straightforward, as seen in the preceding
example. The bold text shows the declaration of the oracle.sql.CLOB object in line
3.2 The SQLJ SELECT statement reads the CLOB locator into the CLOB object.
Line 8 obtains a stream object from the CLOB locator, and the contents are ac-
cessed as you would a standard Java stream.

11.6.6 WRITING TO A CLOB
01: public void witedob(int newid, String filenanme) {

02: try {

03: oracle.sqgl.CLOB theClob = null; /1 not portable
04:

05: #sql { begin

06: insert into deno_clob (id, cdata)

07: val ues (:newld, enpty _clob())

08: returning cdata into :out theC ob

09: end;

10: };

11: if (thelob !'= null) {

12: PrintWiter out = new PrintWiter(

13: t hed ob. get Charact er Qut put Stream()) ;
14; Buf f eredReader in = new BufferedReader (

15: new Fi | eReader (fil ename));
16: String s;

17: while ((s = in.readLine()) !'= null) {

18: out.println(s);

19: }

20: in.close();

21: out. cl ose();

22: }

23: el se {

24; Systemout.println("The clob is null");

25: }

26: }

27: catch (Exception e) {

28: e.printStackTrace();

29: }

30: }

“The SQLJ Translator issues a warning to indicate that the oracle.sql.CLOB column is not portable.
When the Oracle SQLJ Translator is updated to support the JDBC 2.0 CLOB class, portability will be
possible.

e

chll.gxd 5/22/01 10:53 AM Page 596 $

596 Chapter 11
Writing to a CLOB column requires two major steps:

1. Create the CLOB locator value using the Oracle database built-in function
EMPTY_CLOBY().

2. Write the CLOB contents, after getting an output stream from the CLOB lo-
cator.

In the example, lines 5-10 execute a PL/SQL anonymous block that creates
the LOB locator, and returns the value to the Java application. If you are using a
database prior to Oracle8i, then you have to:

0 Execute the INSERT statement to create the empty LOB.
0 Execute a SELECT statement to retrieve the LOB locator value.
O Write to the LOB using a stream object.

The PL/SQL anonymous block was used because it allows the use of the
DML returning clause, and combines the two SQL steps of creating the LOB loca-
tor and reading it into one operation.

11.6.7 READING FROM A BLOB
01: public void readBl ob(int idVal) {

02: try {

03: oracl e.sqgl.BLOB theBlob = null; /1 not portable
04: #sql { select bdata into :theBl ob

05: from deno_bl ob

06: where id = :idval};

07: Input Streamin = theBl ob. getBi naryStream();

08: Systemout.println("Length of data: " + theBlob.length());
09: byte[] buf = new byte[(int)theBlob.length()];

10: i n.read(buf);

11: in.close();

12: Pi ctureFrane pic = new PictureFranme(buf);

13: pi c.setVisible(true);

14: }

15: catch (Exception e) {

16: e.printStackTrace();

17: }

18: }

Reading from a BLOB column requires that you obtain the BLOB locator column
and then a binary stream object. Once the binary stream object is created, you
process the data using the stream methods. The example assumes that it is read-
ing an image object, which is then passed to the PictureFrame class.

e

chll.gxd 5/22/01 10:53 AM Page 597 $

Data Access with SQLJ—Embedding SQL in Java 597

11.6.8 WRITING TO A BLOB
01: public void witeBlob(int newd, String filenane) {

02: try {

03: oracl e.sqgl.BLOB theBlob = null; /1 not portable
04:

05: #sqgl { begin

06: insert into deno_blob (id, bdata)

07: val ues (:newld, enpty bl ob())

08: returning bdata into :out theBl ob;

09: end;

10: }s

11: if (theBlob !'= null) {

12: Qut put St ream out = t heBl ob. get Bi nar yQut put Stream() ;
13: InputStreamin = new Fil el nput Stream(fil enane);
14: int dataByte = O;

15: while ((dataByte = in.read()) !'= -1) {

16: out.wite(dataByte);

17: }

18: in.close();

19: out. cl ose();

20: }

21: el se {

22: Systemout.println("The blob is null");

23: }

24 }

25: catch (Exception e) {

26: e.printStackTrace();

27: }

28: }

Writing to a BLOB also requires that you first obtain the LOB locator, and then
route the binary output stream to the BLOB contents. Using the write() methods
of the output stream, you can modify the contents of the LOB.

11.6.9 READING FROM A LONG COLUMN WITH A UNICODESTREAM
01: #sql iterator LongUnicode (int getld, int getlLen

02: Uni codeSt ream get Dat a) ;

03: public void readLongUni code(int idval) {

04: try {

05: LongUni code iter;

06: #sql iter = { select id getid, len getlen, data getdata
07: from deno_| ong

08: where id = :idval};

09: while (iter.next()) {

e

chll.gxd 5/22/01 10:53 AM Page 598 $

598 Chapter 11
10: int len = iter.getlLen();

11: Systemout.println("Record: " + iter.getld());
12: Uni codeStream aStream = iter.getData();

13: StringBuffer sb = new StringBuffer(len);

14: for (int i =0; i <len; i++) {

15: sb. append((char)aStreamread());

16: }

17: aStream cl ose();

18: System out. println(sb);

19: }

20: iter.close();

21: }

22: catch (Exception e) {

23: e.printStackTrace();

24; }

25: }

The example here uses a UnicodeStream to read 16-bit characters from a LONG
column. The iterator reads the LONG column as a UnicodeStream, and the
stream is accessed using the read() methods. The cast to (char), in line 15, is done
to add a Unicode character to the StringBuffer.

11.6.10 WRITING TO A LONG COLUMN WITH A UNICODESTREAM
01: public void witeLongUnicode(int newd, String filename) {

02: try {

03: File f = new File(fil enane);

04: if (f.exists()) {

05: int len = (int) (f.length() / 2);

06: Uni codeStream i nData = new Uni codeSt r ean{
07: new Fil el nputStrean(f), len);
08: #sql { insert into denpb long (id, len, data)
09: val ues (:nextld, :len, :inbData) };
10: i nDat a. cl ose();

11: #sql { commt };

12: }

13: el se {

14: Systemout.printin("File " +

15: f.get Absol utePath() + " does not exist");
16: }

17: }

18: catch (Exception e) {

19: e.printStackTrace();

20: }

21: }

chll.gxd 5/22/01 10:53 AM Page 599 $

Data Access with SQLJ—Embedding SQL in Java 599

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:

Writing a Unicode file to LONG column requires the following steps:

1. Determine the length of the file in characters by calling the length() method
to obtain its length in bytes and then dividing by two, as shown in line 5.

2. Create the UnicodeStream object using the appropriate constructor, and en-
sure that the correct length is set, as shown in lines 6 and 7.

3. Execute the INSERT statement, passing the Unicode stream object as a bind
value. The Oracle JDBC driver does the rest.

Reading or writing Unicode characters with the UnicodeStream object re-
quires that the high byte be first and the low byte second.®®

11.6.11 READING A BFILE

To read a BFILE, you first obtain the locator, and then use it like a file handle to
open the file and read the contents.

public void readBFile(int idval) {

try {
oracle.sqgl.BFILE bfile = null;
#sql { select fileptr into :bfile
fromdeno_bfile
where id = :idval };
bfil e.openFile();
byte[] buf = bfile.getBytes(1L, (int)bfile. length());
bfile.closeFile();
Pi ctureFrane pic = new PictureFrane(buf);
pic.setVisible(true);
}
catch (Exception e) {
e.printStackTrace();
}
}

The example uses the openFile() method of the BFILE object before reading
the contents. The length() method is used to get the length of the BFILE in bytes.
Alternatively, you can read the contents of the BFILE using the following code:

InputStreamin = bfile.getBinaryStream();
byte[] buf = new byte[(int) bfile.length()];

0On the Microsoft Windows NT platform, Notepad creates Unicode files with the low byte first.
Therefore, you need to byte swap each character read from the file.

e

chll.gxd 5/22/01 10:53 AM Page 600 $

600 Chapter 11

i n.read(buf);
in.close();

In this alternative example, you request a stream object (in this case a binary
stream), and then read the contents using the stream read() method.

11.6.12 WRITING A BFILE

Writing a BFILE is simply the act of inserting a logical link from the database to
the external file.

01: public void witeBfile(int newld, String filenane) {

02: try {

03: #sql { insert into denp bfile (id, fileptr)

04: values (:newld, bfilename('BFILE DIR, :filenane)) };
05: }

06: catch (Exception e) {

07: e.printStackTrace();

08: }

09: }

The code example inserts a new record into a table that holds the BFILE lo-
cators that reference the external files. This is accomplished by calling the Oracle
RDBMS built-in function called BFILENAME. The first argument to the BFILE-
NAME is an Oracle8 DIRECTORY object, and the second parameter is the name
of the file located in the directory. The directory object is created with the CRE-
ATE DIRECTORY statement, which defines a logical name and association for a
physical directory in the operating system. The hard-coded directory name
should be replaced with a parameterized value.

11.7 EXECUTING STORED PROCEDURES AND FUNCTIONS

As in JDBC, the SQLJ environment allows you to execute stored procedures in a
vendor-independent way, regardless of the language used to write the stored
procedure. In the Oracle RDBMS environment, the SQLJ Translator also allows
you to invoke PL/SQL anonymous blocks, as seen in the CLOB and BLOB exam-
ples in the preceding section. Here the focus is on the syntactic aspects of calling a
procedure or a function, without specific examples.

11.7.1 CALLING A STORED PROCEDURE

The syntax used to call a stored procedure is:

#sql { call procedure-nane [(argunents, .)] };

e

chll.gxd 5/22/01

10: 53 AM Page 601 $

Data Access with SQLJ—Embedding SQL in Java 601

The procedure name can include an Oracle database schema name and a package
name, using the standard dot notation to qualify the procedure.

The arguments are optional, depending on the formal parameters declared
in the procedure call. When using Oracle7 databases, you must omit the brackets
if there are no arguments.

11.7.2 CALLING A STORED FUNCTION

Calling a stored function requires the following syntax:
type-name result;
#sql result = { values (function-name [(argunents, .)]) };

In the syntax shown, the type-name is the return data type expected for the
function return value. The VALUES keyword is required, and the called function
name is placed inside brackets. The function name can include an Oracle data-
base schema name and/or a PL/SQL package name, and have optional argu-
ments. The function result is stored in the Java variable whose name is listed be-
fore the assignment operator.*®

11.7.3 STORED PROCEDURE OR FUNCTION ARGUMENTS

Stored procedures and functions accept arguments using different parameter-
passing methods. In the Oracle environment, a parameter has one of the follow-
ing modes:

O IN—accepts a value from an input-only argument.
0 OUT—returns a value to the caller using an output-only argument.

O INOUT—accepts a value from the caller, and returns a modified value
using the same argument.

When you call a stored procedure/function in SQLJ, you must explicitly iden-
tify the mode used for each bind variable used as a parameter. The syntax for speci-
fying a parameter-passing mode is to include one of the keywords, IN, OUT, or
INOUT, immediately after the colon and before the bind variable name. For example:

int id;
i nt cust Nane;

#sql { get _custoner(:in id, :out custNane) };

%The function result does not need a preceding colon because it is outside the curly braces. The gen-
eral rule is: if the Java variable is inside the curly braces, then it must be preceded by a colon to be
treated as a bind variable.

e

chll.gxd 5/22/01

602

10: 53 AM Page 602 $

Chapter 11

The example calls a procedure called get_customer, passing an input integer ar-
gument as the first parameter, and receives the customer name from the second
output string argument.

SUMMARY

SQLJ is a standard way to embed SQL statements in Java code in order to interact
with a relational database. The simplicity of using SQLJ has been demonstrated;
its coding benefits include:

0 Reducing the amount of code to be written.
O Stronger type checking and validation at translation time.

You have read about using SQLJ to perform most of the same tasks you can
do in JDBC, such as executing SQL statements, stored procedures, and functions,
and processing large object data types and complex structures like SQL objects.
You were introduced to the Oracle JPublisher utility that showed how to generate
a Java class for an SQL object type that allows your SQLJ applications to work
with database SQL object data in a way natural to a Java developer.

Using SQLJ, or JDBC, a set of classes can be developed that encapsulate the
logic needed to access the database. An application developer can focus on build-
ing the business process logic to use the classes that provide database access. Sub-
sequent changes to the data-access implementation classes can minimize the im-
pact on changes made to the application business-process logic. The task of
writing a class to manage the business rules that manage the data is time-
consuming. SQLJ can reduce the time it takes to develop the database class
library.

As an alternative, you can use Oracle JDeveloper to generate a set of classes
that conform to a framework called Business Components for Java that encapsu-
lates the data-access layer and associated data-validation rules. This is the next
step toward even more rapid application development for your enterprise class
applications. If you do not use Oracle JDeveloper, you have to handcraft the
framework or the data access layer API yourself.

