
User name: VLADIMIR BLAGOJEVIC
Book: Database Programming with JDBC and Java, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use
that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these
Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

4.2. Batch Processing

Complex systems often require both online and batch processing. Each kind of processing has very different
requirements. Because online processing involves a user waiting on application processing order, the timing and
performance of each statement execution in a process is important. Batch processing, on the other hand, occurs
when a bunch of distinct transactions need to occur independently of user interaction. A bank's ATM machine is
an example of a system of online processes. The monthly process that calculates and adds interest to your
savings account is an example of a batch process.

JDBC 2.0 introduced new functionality to address the specific issues of batch processing. Using the JDBC 2.0
batch facilities, you can assign a series of SQL statements to a JDBC Statement (or one of its subclasses) to be
submitted together for execution by the database. Using the techniques you have learned so far in this book,
account interest-calculation processing occurs roughly in the following fashion:

Prepare statement.1.

Bind parameters.2.

Execute.3.

Repeat steps 2 and 3 for each account.4.

This style of processing requires a lot of "back and forth" between the Java application and the database. JDBC
2.0 batch processing provides a simpler, more efficient approach to this kind of processing:

Prepare statement.1.

Bind parameters.2.

Add to batch.3.

Repeat steps 2 and 3 until interest has been assigned for each account.4.

Execute.5.

Under batch processing, there is no "back and forth" between the database for each account. Instead, all
Java-level processing—the binding of parameters—occurs before you send the statements to the database.
Communication with the database occurs in one huge burst; the huge bottleneck of stop and go communication
with the database is gone.

Statement and its children all support batch processing through an addBatch() method. For Statement ,
addBatch() accepts a String that is the SQL to be executed as part of the batch. The PreparedStatement and
CallableStatement classes, on the other hand, use addBatch() to bundle a set of parameters together as part of
a single element in the batch. The following code shows how to use a Statement object to batch process interest
calculation:

Statement stmt = conn.createStatement();
int[] rows;

for(int i=0; i<accts.length; i++) {
 accts[i].calculateInterest();
 stmt.addBatch("UPDATE account " +
 "SET balance = " +
 accts[i].getBalance() +
 "WHERE acct_id = " + accts[i].getID());
}
rows = stmt.executeBatch();

The addBatch() method is basically nothing more than a tool for assigning a bunch of SQL statements to a JDBC
Statement object for execution together. Because it makes no sense to manage results in batch processing, the

http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch04-19385

1 of 3 13.5.2009 9:13

statements you pass to addBatch() should be some form of an update: a CREATE, INSERT, UPDATE, or DELETE.
Once you are done assigning SQL statements to the object, call executeBatch() to execute them. This method
returns an array of row counts of modified rows. The first element, for example, contains the number of rows
affected by the first statement in the batch. Upon completion, the list of SQL calls associated with the Statement
instance is cleared.

This example uses the default auto-commit state in which each update is committed automatically.[*] If an error
occurs somewhere in the batch, all accounts before the error will have their new balance stored in the database,
and the subsequent accounts will not have had their interest calculated. The account where the error occurred
will have an account object whose state is inconsistent with the database. You can use the getUpdateCounts()
method in the BatchUpdateException thrown by executeBatch() to get the value executeBatch() should have
otherwise returned. The size of this array tells you exactly how many statements executed successfully.

[*] Doing batch processing using a Statement results in the same inefficiencies you have already seen in Statement objects
because the database must repeatedly rebuild the same query plan.

In a real-world batch process, you will not want to hold the execution of the batch until you are done with all
accounts. If you do so, you will fill up the transaction log used by the database to manage its transactions and
bog down database performance. You should therefore turn auto-commit off and commit changes every few rows
while performing batch processing.

Using prepared statements and callable statements for batch processing is very similar to using regular
statements. The main difference is that a batch prepared or callable statement represents a single SQL statement
with a list of parameter groups, and the database should create a query plan only once. Calculating interest with
a prepared statement would look like this:

PreparedStatement stmt = conn.prepareStatement(
 "UPDATE account SET balance = ? WHERE acct_id = ?");
int[] rows;

for(int i=0; i<accts.length; i++) {
 accts[i].calculateInterest();
 stmt.setDouble(1, accts[i].getBalance());
 stmt.setLong(2, accts[i].getID());
 stmt.addBatch();
}
rows = stmt.executeBatch();

Example 4.1 provides the full example of a batch program that runs a monthly password-cracking program on
people's passwords. The program sets a flag in the database for each bad password so a system administrator
can act appropriately.

Example4.1. A Batch Process to Mark Users with Easy-to-Crack Passwords

import java.sql.*;
import java.util.ArrayList;
import java.util.Iterator;

public class Batch {
 static public void main(String[] args) {
 Connection conn = null;

 try {
 // we will store the bad UIDs in this list
 ArrayList breakable = new ArrayList();
 PreparedStatement stmt;
 Iterator users;
 ResultSet rs;

 Class.forName(args[0]).newInstance();
 conn = DriverManager.getConnection(args[1],
 args[2],
 args[3]);
 stmt = conn.prepareStatement("SELECT user_id, password " +
 "FROM user");
 rs = stmt.executeQuery();
 while(rs.next()) {
 String uid = rs.getString(1);
 String pw = rs.getString(2);

 // Assume PasswordCracker is some class that provides
 // a single static method called crack() that attempts
 // to run password cracking routines on the password

http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch04-19385

2 of 3 13.5.2009 9:13

 if(PasswordCracker.crack(uid, pw)) {
 breakable.add(uid);
 }
 }
 stmt.close();
 if(breakable.size() < 1) {
 return;
 }
 stmt = conn.prepareStatement("UPDATE user " +
 "SET bad_password = 'Y' " +
 "WHERE uid = ?");
 users = breakable.iterator();
 // add each UID as a batch parameter
 while(users.hasNext()) {
 String uid = (String)users.next();

 stmt.setString(1, uid);
 stmt.addBatch();
 }
 stmt.executeBatch();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(conn != null) {
 try { conn.close(); }
 catch(Exception e) { }
 }
 }

 }
}

http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch04-19385

3 of 3 13.5.2009 9:13

