http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch03-25281

User name: VLADIMIR BLAGOJEVIC
Book: Database Programming with JDBC and Java, 2nd Edition

No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher of the book or chapter. Redistribution or other use
that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these
Terms of Service is strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and
Massachusetts laws.

3.5. Scrollable Result Sets

The single most visible addition to the JDBC API in its 2.0 specification is support for scrollable result sets. When
the JDBC specification was first finalized, the specification contributors engaged in serious debate as to whether
or not result sets should be scrollable. Those against scrollable result sets—and | was one of them—argued that
they were antithetical to object-oriented programming and that they violated the rule that complex functionality
should not encumber the most commonly used classes. In addition, requiring all driver vendors to implement
scrollable result sets could adversely impact the performance of more mundane result set operations for some
database engines. Scrollable result sets, on the other hand, are common in database vendor APls, and the
database vendors thus believed they should be present in JDBC.

3.5.1. Result Set Types

Using scrollable result sets starts with the way in which you create statements. Earlier in the chapter, you
learned to create a statement using the createStatement() method. The Connection class actually has two
versions of createStatement()—the zero parameter version you have used so far and a two parameter version
that supports the creation of Statement instances that generate scrollable ResultSet objects. The default call
translates to the following call:

conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_READ ONLY);

The first argument is the result set type. The value ResultSet.TYPE_FORWARD_ONLY indicates that any ResultSet
generated by the Statement returned from createStatement() only moves forward (the JDBC 1.x behavior). The
second argument is the result set concurrency. The value ResultSet.CONCUR_READ_ONLY specifies that each row
from a ResultSet is read-only. As you will see in the next chapter, rows from a ResultSet can be modified in
place if the concurrency specified in the createStatement() call allows it.

JDBC defines three types of result sets: TYPE_FORWARD_ONLY , TYPE_SCROLL_SENSITIVE , and
TYPE_SCROLL_INSENSITIVE . TYPE_FORWARD_ONLY is the only type that is not scrollable. The other two types are
distinguished by how they reflect changes made to them. A TYPE_SCROLL_INSENSITIVE ResultSet is unaware of
in-place edits made to modifiable instances. TYPE_SCROLL_SENSITIVE, on the other hand, means that you can see
changes made to the results if you scroll back to the modified row at a later time. You should keep in mind that
this distinction remains only while you leave the result set open. If you close a TYPE_SCROLL_INSENSITIVE
ResultSet and then requery, your new ResultSet reflects any changes made to the original.

3.5.2. Result Set Navigation

When ResultSet is first created, it is considered to be positioned before the first row. Positioning methods such
as next() point a ResultSet to actual rows. Your first call to next(), for example, positions the cursor on the
first row. Subsequent calls to next() move the ResultSet ahead one row at a time. With a scrollable ResultSet,
however, a call to next() is not the only way to position a result set.

The method previous() works in an almost identical fashion to next(). While next() moves one row forward,
previous() moves one row backward. If it moves back beyond the first row, it returns false. Otherwise, it
returns true. Because a ResultSet is initially positioned before the first row, you need to move the ResultSet
using some other method before you can call previous(). Example 3.5 shows how previous(), after a call to
afterLast(), can be used to move backward through a ResultSet.

Example3.5. Moving Backward Through a Result Set

import java.sql.*;
import java.util._*;

public class ReverseSelect {
public static void main(String argv[]) {

10f3 13.5.2009 9:03

2 0f3

http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch03-25281

Connection con = null;

try {
String url = "jdbc:msql://carthage.imaginary.com/ora';
String driver = "com.imaginary.sql .msql _MsqlDriver";

Properties p = new Properties();
Statement stmt;
ResultSet rs;

p-put(user', "borg™);
Class.forName(driver).newlnstance();
con = DriverManager.getConnection(url, *borg"™, "™);
stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

rs = stmt.executeQuery("'SELECT * from test ORDER BY test _id");
// as a new ResultSet, rs is currently positioned
// before the first row
System.out.printin(*"Got results:");
// position rs after the last row

rs.afterLast();
while(rs.previous()) {

int a;
String str;

rs.getint("test_id");
s.wasNull()) {
= —]_;

-
DAl
=

f

tr = rs.getString("test_val™);

f(rs.wasNull()) {

str = null;

}

System.out.print(""\ttest_id= " + a);
System.out.printIn("*/str= *" + str + """);

}
s
i

}

System.out.printin(*'Done.™);

catch(Exception e) {
e.printStackTrace();

3
finally {
ifC con 1= null) {
try { con.close(); }
catch(SQLException e) { e.printStackTrace(); }
¥
3
s
3

This example is really no different than the SELECT example from earlier in the chapter. This example simply pulls
the results out of the database backward.

Along with afterLast() and previous(), JDBC 2.0 provides new methods to navigate around rows in result
sets: beforeFirst(), first(), last(), absolute(), and relative(). Except for absolute() and
relative(), the names of the methods say exactly what they do. The beforeFirst() method positions the
ResultSet before the first row—its initial state—and the first() and last() methods position the ResultSet on
the first and last rows, respectively.

The methods absolute() and relative() each take integer arguments. For absolute(), the argument
specifies a row to navigate to. A call to absolute(5) moves the ResultSet to row 5—unless there are four or
fewer rows in the ResultSet. If the specified row is beyond the last row in the ResultSet, the ResultSet is
positioned after the last row. A call to absolute() with a row number beyond the last row is therefore identical to
a call to afterLast().

You can also pass negative numbers to absolute(). A negative number specifies absolute navigation backwards
from the last row. Where absolute(1) is identical to First(), absolute(-1) is identical to last(). Similarly,
absolute(-3) is the third to last row in the ResultSet. If there are fewer than three rows in the ResultSet, then
ResultSet is positioned before the first row.

The relative() method handles relative navigation through a ResultSet. In other words, it tells the ResultSet
how many rows to move forward or backward. A value of 1 behaves just like next() and a value of -1 just like
previous().

13.5.2009 9:03

30f3

http://acmsel.safaribooksonline.com/print?xmlid=1565926161/ch03-25281

3.5.3. Determining Where You Are

It is hard to get where you want to go if you don't know where you are. Navigating through scrollable result sets
is no different. Of course, you do know where a ResultSet is positioned when you first create it. While processing
the ResultSet, however, you may find that you don't know where the ResultSet is positioned. The ResultSet
class fortunately provides these methods to let you check the current ResultSet position: isFirst(), isLast(),
isBeforeFirst(), isAfterLast(), and getRow(). All except getRow() return booleans; getRow() returns the
current row number as an integer.

3.5.4. Helping Your Driver with Scrollable Result Sets

One of the drawbacks of scrollable result sets is that they can be inefficient for some database engines to
implement. Specifically, a JDBC driver needs to process rows in an ad hoc fashion, rather than a single,
unidirectional fashion. Before scrollable result sets, a JDBC driver can intelligently fetch rows from the database
in a just-in-time fashion. While you are getting the first row, it is off retrieving the second and third rows.

JDBC 2.0 gives you the power to help your driver efficiently handle scrollable result sets—to help it avoid having
to be ready for random navigation. The method setFetchDirection() lets you tell the driver the direction in
which you intend to process a result set. It accepts the values ResultSet.FETCH_FORWARD,
ResultSet.FETCH_REVERSE, or ResultSet.FETCH_UNKNOWN. Calling this method may mean absolutely nothing. If,
however, the driver can take advantage of knowing the direction in which you intend to process results, then
calling this method should improve your performance.

The setFetchSize() method is another method you can use to help the driver be more efficient. The default
fetch size is and ignored; the driver makes its best guess as to how many rows to prefetch. If, for example, you
know you only want to grab the first row from a result set and no more, you can specify a fetch size of 1. If the
driver can optimize based on this information, it can make sure it is not simply returning all the rows when you
will only handle 1. By setting the value to 1, however, you do not limit yourself; this value is just a hint to the
driver.

When writing a client that intends to use a subset of information in a result set at any given point, you should
definitely take advantage of the ability to provide these hints. By indicating to a driver that uses this information
that you intend to display only 50 rows at a time in a Swing JTable, you prevent it from sending all 1,000 rows
of a result set to a client who will likely see at most 100 rows.

13.5.2009 9:03

